Committee Members

Joey Burt, Director, Animal Health Center
 Committee Chair

Michael Brashier, Equine Service

Bill Epperson, Head Department of Pathobiology and Population Medicine

Allison Gardner, Director, Veterinary Medical Technology

Lester Khoo, Director, Aquatic Diagnostic Laboratory

Ron McLaughlin, Head Department of Clinical Science;
 President, Mississippi State University College of Veterinary Medicine
 Clinical Outreach Services

Lanny Pace, Director Mississippi Veterinary Research and Diagnostic Laboratory System

Lucy Senter, Director, Laboratory Animal Resources and Care, Attending Veterinarian

Cheron Snow, Multidiscipline Laboratory Coordinator

Kimberly Woodruff, Shelter Medicine Program
Contents

1. Executive Summary 4

2. Introduction 5

3. Animal Health Center General Guidelines for Infection Control 6

 Small Animal 12
 Equine 13
 Food Animal 16

5. Animal Health Center Isolation Areas 18
 Small Animal 18
 Equine 19
 Food Animal 22

6. Animal Health Center General Cleaning and Surveillance 25
 Small Animal 28
 Equine 30
 Food Animal 40

7. Scales Equine Theriogenology Biosecurity Plan 44

8. Infection Control in the Diagnostic Laboratory Services 45

9. Shelter Medicine Program Infection Control and Biosecurity 55

10. Multidisciplinary Laboratory Biosecurity/
 Veterinary Medical Teaching Program 57

11. Clinical Outreach Services 66
 Animal Emergency and Referral Center
 Veterinary Specialty Center
1. Executive Summary

The intent of this document is to facilitate adherence to protocols designed to protect both the caretaker and the patient from exposure to infectious disease agents. Infectious disease exposure is common in a hospital setting, and the goal of these procedures is to mitigate exposure risk by a diversity of patients, caregivers (young, old, species variations, etc.) variable health status. These practices have their foundation in the discipline of public health.

Hand washing and hygiene are at the core of preventing the spread of disease in a hospital setting. Correct hand-washing practices must be followed at all times.

Another essential prevention method against spread of nosocomial infection is the proper and appropriate use of Personal Protective Equipment (PPE). Adherence to hospital policy regarding the use and disposal/laundering of PPE must be followed at all times.

Food or drink are not allowed in animal holding or treatment areas. The application of cosmetics is prohibited also in these areas. Food and drink should be consumed in designated areas only.

Specific policies are provided for the control of multi-drug resistant organism infections (MDRI). It is imperative that all personnel know and follow specified procedures for handling known MDRI cases.

All personnel must be familiar with protocols identifying and placing patients in isolation. These protocols are provided, in detail, within this document for reference.
2. Introduction

A primary College of Veterinary Medicine concern is the safety of personnel (staff, students, visitors) and patients. The College is committed to providing training and resources necessary to ensure this commitment to safety is effected.

Numerous pathogens are associated with nosocomial and zoonotic diseases and many are encountered commonly in veterinary medical practice. These pathogens include, but are not limited to, microorganisms such as *Salmonella*, *E. coli*, multidrug resistant organisms such as methicillin-resistant *Staphylococcal aureus*, *Pseudomonas*, and other bacteria. Viral and prion-associated diseases are encountered also. Intervention at the earliest possible stage of the encounter of disease spread is accomplished by identification of animals with potential for infectious disease and proper isolation, appropriate handling of suspected cases including risk assessment of responsible personnel, and further reduction of exposure by disinfection and cleaning of areas utilized. Self-reporting of health risks of subpopulations that may be more susceptible or vulnerable to potential infection is required. These subpopulations include individuals that may be pregnant, those with immunosuppressive disorders, individuals undergoing treatment with immune-suppressive drugs, those with open skin wounds or chronic skin diseases, and others with chronic disease processes. It should be noted that very elderly or young, healthy individuals might be at an increased risk, as well. *Anyone with a condition that a person believes may make them vulnerable to infection while carrying out their normal daily duties within the College of Veterinary Medicine is required to notify the Dean for Admissions and Student Affairs and the Director of the Animal Health Center (Chair of the Biosafety and Infection Control Committee).*
3. General guidelines for infection control

General Biosecurity Policies and Procedures

Personal Protective Actions and Equipment

Hand Hygiene

Nosocomial infections are recognized as a major concern in human medicine with approximately 2 million incidents reported annually in the United States and costing an estimated $4.5 to $11 billion. It should be expected that the risk of nosocomial infections is probably even higher in veterinary medicine due to the nature of veterinary patients with their grooming and toiletry habits. Total counts of bacteria on the hands of human medical staff have ranged from 3.9×10^4 to 4.6×10^6. **Hand hygiene has been considered the most important tool in controlling and preventing nosocomial infections.**

- Regardless of glove usage, wash hands before and after each patient encounter.
- Wash hands after contact with feces, body fluids, vomitus, exudates, or any surface or article contaminated by these substances.
- Wash hands before eating, drinking, or smoking.
- Wash hands after using the restroom.
- Wash hands after cleaning animal cages or areas used by patients.
- Wash hands whenever visibly soiled.
- Alcohol-based hand rubs may be used if hands are not visibly soiled, but washing of hands with soap and water is preferred.
- Do not wear hand jewelry or artificial nails when handling animals.
- Keep fingernails trimmed short.
- Correct hand washing procedure:
 - Wet hands with running water
 - Place soap in palms and rub together to make a lather
 - Scrub hands thoroughly for a minimum of 20 seconds
 - Rinse hands in running water thoroughly
 - Dry hands with a disposable (paper) hand towel
 - Turn off faucet using the disposable towel to prevent contact of faucet control with clean hand
- Correct use of hand rubs:
 - Ensure hands are visibly unsoiled
 - Place alcohol-based hand rub in palms
 - Apply to all surface of the hands
 - Rub hands together until dry
- More information regarding hand hygiene can be found at:
 - Another excellent resource regarding hand hygiene can be found with the webpage for the Center for Food Safety and Public Health at Iowa State. http://www.cfsph.iastate.edu (CFSPH Main Menu->Infection Control
Use of Gloves and Sleeves

- It is not necessary to wear gloves when examining or handling apparently healthy animals.
- Gloves should be worn when handling feces, body fluids, vomitus, and exudates.
- Gloves should be worn when cleaning cages, litter boxes, and contaminated surfaces and equipment.
- Gloves should be worn when handling dirty laundry.
- Gloves should be worn when handling diagnostic specimens (e.g., urine, feces, aspirates, or swabs).
- Gloves should be worn when handling an animal with a suspected infectious disease.
- Gloves should be worn when handling immune compromised animal patients.
- **Gloves should be worn at all times when handling patients in the intensive care unit. Gloves must be changed between patients.**
- Gloves should be changed between examinations of individual animals or animal groups (e.g., litter of puppies).
- Gloves should be changed between dirty and clean procedures on the same patient.
- Gloves should be removed promptly and disposed of after use.
- Hands should be washed after removal of gloves.

Facial Protection

- Facial protection should be worn whenever splashes, sprays, or aerosolization is likely to occur.
- Facial protection may be accomplished with a face shield, or goggles/glasses worn with a surgical mask.
- Facial protection should be worn with the following procedures:
 - Dentistry
 - Lancing abscesses
 - Flushing of wounds
 - Nebulization
 - Suctioning
 - Lavage
 - Scoping procedures
 - Obstetrical procedures
 - Necropsy

Protective Outerwear and Attire

- The Mississippi State University-College of Veterinary Medicine-Animal Health Center (MSU-CVM-AHC) promotes the use of hospital dedicated attire in order to decrease the risk of transferring infectious agents to public locations where people or animals may be exposed or, conversely, unknowingly bringing infectious agents into the hospital.
- All personnel are required to wear clean professional attire, clean protective outer garments, and clean, appropriate footwear at all times. This attire should be
appropriate to the job at hand (e.g., coveralls and heavy boots or shoes are appropriate footwear and protective outer garments are appropriate when working with large animal patients and performing tasks that have a high risk of being soiled with infectious materials. Professional attire covered by a laboratory coat will generally be appropriate for small animal clinical duty.

- **Scrubs, scrub tops, lab coats and other dedicated work clothes and shoes should not be worn home or into areas outside the AHC. Operating room attire (gowns, gloves, masks, etc.), including shoe covers and head covers, should be worn only in the operating room suite**
- MSU-CVM-AHC provides a laundry service for hospital and laboratory attire.

Food and Drink

- Food and drink should not be consumed in animal holding areas or laboratory areas of the hospital. This restriction includes access areas and hallways immediately adjacent to animal holding areas and laboratories.
- Neither wearing contact lenses nor make-up should occur in animal holding areas, laboratories, or access areas immediately adjacent.
- If food or drinks are to be consumed or served, separate areas, such as the break room, cafeteria or seminar rooms, should be used to avoid possible contamination.
- Clothing soiled by animal dander, feces, urine, or any other bodily secretion or excrement is inappropriate to be worn in the cafeteria or out of the building to any public area. Note that CLEAN laboratory coats worn over CLEAN surgical scrubs to prevent surgical scrubs from being soiled is the **only exception to this mandate**. Coat racks are provided immediately outside the cafeteria entrances for laboratory coat storage.

Risk Assessment and Communication

- At each stage of case workup (e.g., appointment scheduling, admissions, history taking, physical exam, etc.) every effort should be made to identify possible contagious or zoonotic diseases and appropriate steps followed to mitigate disease spread and/or contact.
- It is the responsibility of the student, faculty, or staff member to communicate any health risks they may notice to his or her immediate supervisor. As pregnancy, splenectomy, or other therapy/treatments may result in reduced immunity, provisions must be made by administration to accommodate these individuals in course and laboratory requirements.
- Faculty, staff, and students must report immediately any change in health status that may increase susceptibility to infectious agents or radiological and anesthetic hazards to their immediate supervisor or to the Academic Affairs office.
- In cases of suspect or confirmed zoonotic diseases, clients, referring veterinarians, student, and staff contacts should be made aware of potential risks. Any person with known suspected symptoms should be encouraged strongly to seek immediate medical attention immediately.
- In cases of contagious diseases, clients and referring veterinarians should be informed and counseled on controlling spread of the disease.
Reporting Process

All individuals with a condition (e.g., immunosuppression, splenectomy, not vaccinated) that may potentially make them more vulnerable to infection while carrying out their normal daily duties within the College of Veterinary Medicine are required to notify the Dean for Admissions and Student Affairs and the Director of the Animal Health Center (Chair of the Biosafety and Infection Control Committee).

Understanding Routes of Transmission
Knowing the basic routes of infectious disease transmission can be useful in protecting one’s self, the patient, and the client from known and unknown potential pathogens.

- Aerosol transmission - Occurs when pathogenic agents contained in aerosol droplets are passed from one susceptible animal to another, or from animal-to-human (zoonoses). Most pathogenic agents generally do not survive for extended periods of time within the aerosol droplet, although there are exceptions. *Streptococcus equi* can survive for 4 to 6 weeks in secretions on wood. Pressure washing of cages, stalls, etc., may re-aerosolize infectious agents that have landed previously on a surface.

- Oral transmission – Involves the consumption of pathogenic agents in contaminated feed, water, or by licking/chewing on contaminated environmental objects. This transmission can also occur inadvertently through inhalation of aerosolized material and subsequent swallowing of materials present in the nasopharynx. Feed and water contaminated with feces or urine are frequently the cause of oral transmission of disease agents. Contaminated environmental objects may include equipment, feed bunks, water troughs, fencing, salt and mineral blocks, and other items that an animal may lick or chew. In people, oral contact with contaminated hands is commonly part of the transmission cycle of fecal-oral spread either to themselves or to their next patient. This emphasizes the need for an excellent hand hygiene protocol.

- Direct contact transmission - Requires the presence of an agent or organism in the environment or within an infected animal. A susceptible animal becomes exposed when the agent directly touches open wounds, mucous membranes, or skin through blood, saliva, nose-to-nose contact, rubbing, or biting. It is important to note that, depending on the disease agent, it is possible for direct contact transmission to occur among animals of different species, as well as to humans.
 - Reproductive transmission – a subtype of direct contact that encompasses diseases spread through venereal and in-utero routes. Venereal transmission is the spread of pathogenic agents from animal-to-animal through coitus. In-utero (or transplacental) transmission is the spread of pathogenic agents from dam to offspring during gestation.

- Fomite transmission – Requires an inanimate object to carry a pathogen from one susceptible animal to another. Fomite transmission often involves a secondary route of transmission such as oral or direct contact for the pathogen to enter the host. Anything may act as a fomite including obvious objects such as contaminated vehicles, shovels, boots/shoes, clothing, bowls/buckets, syringes, medical equipment, brushes, tack, and clippers, but also less obvious items such as keyboards, telephones, and multi-dose medicinal containers.
o Traffic transmission – a subtype of fomite transmission in which a vehicle, trailer, or human contributes to the spread of a pathogenic agent through contaminated tires, wheel wells, undercarriage, clothing, or shoes/boots by spreading organic material to other locations.

- Vector-borne transmission – Occurs when an animal (usually and insect or arthropod) acquires a pathogen from one animal and transmits it to another. Vectors can transmit disease either mechanically or biologically. Mechanical transmission means that the disease agent does not replicate or develop in/on the vector; it is transported simply by the vector from one animal to another (flies, hands, etc.). Biological transmission occurs when the vector takes up the agent, usually through a blood meal from an infected animal, replicates and/or develops it, and then passes the agent through such acts as regurgitating the pathogen onto or injecting it into a susceptible animal. Fleas, ticks, and mosquitoes are common biological vectors of disease agents.

- Zoonotic transmission – Occurs when diseases are transmitted from animals to humans. Human exposure will actually occur through one of the five routes of transmission (lists above), but because of zoonoses medical importance, it is addressed as a separate route of transmission.

International Travel and Reportable/Exotic Disease Contact

International travel within the past 5 days

- Clothing taken outside the US/Canada should be laundered/dry cleaned before return. Any clothes worn on the return trip must be laundered/dry cleaned immediately upon return.
- All dirt and soil should be removed from shoes and personal items (watches, cameras, laptops, jewelry, cell phones, etc.) by thorough cleaning followed by disinfection with a 250-300 PPM bleach solution or Virkon-S.
- No plant or animal products should be brought to any CVM or university farm premises, including any food products purchased during any international travels regardless of whether that good passes customs inspection except under USDA license and with the permission and consent of the infectious disease control administrator.
- Clinicians and receptionists are responsible for ensuring clients do not fall under the restrictions noted above.

Reportable/Exotic Disease/Biosafety Level 3 contact within the past 7 days

- Personnel who have visited a Biosafety level 3 or 3+ laboratory dealing with exotic/reportable disease outbreak investigation or research have traveled out of US/Canada and have had contact with animals, including livestock, birds, horses, zoo animals, pets, wildlife, or laboratory animals, will be restricted from access to the CVM or university farm premises for 7 days post animal contact. Clothing, footwear, and personal items worn during the animal contact should be treated as above.
- Personnel who have been helped investigate or control any exotic disease outbreak within the borders of US/Canada will be restricted from access to the CVM or
university farm premises for 7 days post animal contact. Clothing, footwear, and personal items worn during the investigation should be treated as described above.

Tours and public offerings
- CVM staff coordinating visits, open house activities, or tours may restrict access to any member of the group should they fall under any of the above limitations, as well as ensure that no member of the tour group be pregnant, have any immunologically limiting disease, or be on any immunologically suppressing drug therapy, if that group is to have any access to animal areas including the barns and hospital. This restriction applies also to all students and CVM employees giving both formal and informal tours.

Visitor Policy Form

The College of Veterinary Medicine’s goal is to ensure the safety of all visitors and patients. It is the College's responsibility to protect the public and its patients from adverse risks. The College regrets any inconvenience this may cause. As a result:

Please inform all members of your group of these precautionary measures.

Please inform your College of Veterinary Medicine tour leader/contact if any member of your group has any health issues that may compromise that individual’s immune system defenses, including pregnancy, immunosuppressive diseases, and/or immunosuppressive drug therapy.

Please inform your College of Veterinary Medicine tour leader/contact if any member of your group has traveled outside the United States or Canada within the past 5 days, or if any member of your group has had contact with any animals outside the United States or Canada within the past 7 days, or if any member of your group has been in an area under quarantine for an exotic animal disease within the United States or Canada within the past 7 days.

Please confirm that all members of the tour group have been informed of the above issues and have agreed to abide by any restrictions deemed necessary.

__ ______
Signature of group leader Date
4. Patient isolation determination

Small Animal
During the Phase II Orientation to clinics and at the beginning of each primary care Community Veterinary Services rotation, students are instructed in appropriate handling of cases and proper isolation protocols. This includes each individual student taken to isolation and instructed about the processes for entering and caring for a patient admitted to isolation. This is verified with the electronic ID scan. (Appendix A)

This process includes:

- All loose articles of clothing and equipment will be removed before entering the anteroom of isolation.
- PPE includes gown, glove, shoe covers, and face shield/mask (if warranted) be donned.
- A footbath will be set up just outside the isolation room.
- Any item brought into isolation will stay in isolation or be disposed of with bio-hazardous materials. All supplies and equipment needed for patient care will be found in isolation. If an item needs restocked, notify the technician in the area.
- The isolation ward will be indicated as “occupied” with external door signage.
- ICU personnel will be notified regarding occupancy so video monitoring may occur.
- All PPE will be removed before exiting isolation and disposed of in bio-hazardous marked bags.
- After removal of boots/shoe covers, shoes will pass through the footbath or disinfectant applied. Hands will be washed and hand sanitizer utilized after washing but before leaving the isolation anteroom.
- Personnel are instructed to use prudence when returning to the AHC and as to patient interaction selection.

Identification of potential infectious disease patients

- The health care team will monitor and identify potentially highly infectious cases at the earliest possible stage of the visitation process. (Example: If a client/referring DVM calls with a young, minimally vaccinated puppy with diarrhea; a suspicion of parvovirus will be made and the patient handled accordingly until a definitive diagnosis is made.)
- Any suspect animal will be identified immediately upon admission, the student/house officer/faculty member notified, and appropriate protocols followed to minimize exposure to healthy animals and, if applicable, personnel.
 - Establish two types of restricted animal access.
 - Animals suspected strongly of having the following diseases or signs should be treated as probable highly infectious (limited access and exposure), and, if admitted, placed immediately in isolation:
 - Acute distemper, parvo, infectious hepatitis, leptospirosis, bordetellosis (kennel cough), feline upper respiratory tract infections, or any other undiagnosed infection that appears to be contagious.
 - Restricted access for any animal with a multi-drug resistant infection (MDRI). These include:
• Any organism susceptible to one or two antimicrobial families
• Gram-negative infections resistant to 3rd-generation cephalosporins (extended-spectrum beta-lactamase (ESBL) producers) and fluoroquinolones.
• *Methicillin-resistant staphylococcus aureus* (MRSA)

- Clinical microbiology will:
 - Report suspected MDRIs to the head technician in the service.
 - Veterinarians listed on the submission will be notified by email or phone call.
 - The record should be flagged to indicate the organism is a MDRI.

- Suspect animals will be admitted to the Animal Health Center for examination via an alternate route minimizing contact with patients in the reception areas and outpatient hospital areas. Likewise, if contagious potential is known ahead of presentation, bring patient into AHC using alternate route (side hallway between Landscape room and AHC administrative offices). If used, personnel must physically quarantine the alternate route until such time as it can be properly disinfected.
 (Appendix B)

- Suspect animals should be taken immediately to Room a1511 (2nd choice is a1510) for taking history and giving a physical examination. These exam rooms are located in an area with less traffic and therefore providing less potential exposure to healthy, client-owned animals and personnel. The objective of infection control involves elimination/isolation of the source, reduction of susceptible host(s), and/or interruption of transmission.

- If the animal has a highly contagious disease it is either discharged immediately via the alternative route or admitted to small animal isolation (Room a1509).

- Quarantine signage (blue contaminated room sheets) is placed on both exam room doors and directions followed for contacting LARAC for cleaning/disinfecting.
 (Appendix C)

- Personnel are reminded to wash their hands and wear appropriate Personal Protective Equipment (PPE) when handling such cases.

Equine

At the beginning of each Equine Medicine and Surgery Services rotation, students are instructed in appropriate handling of cases and proper isolation protocols. This includes each individual student taken to isolation and walked through the processes for entering and caring for a patient admitted to isolation. This process is verified with the electronic ID scan.

Guidelines for Receiving and Managing equine patients at high risk of carrying contagious disease

Special precautions are required when managing patients known or suspected to be infected with contagious disease agents. Conditions of special concern because of the potential for nosocomial transmission include patients with acute gastrointestinal
disorders (e.g., diarrhea), acute respiratory tract infections, or infections with bacteria that are resistant to multiple antimicrobial drugs.

- Patients with elevated contagious disease risk will be managed as outpatients or isolated from the general equine hospital population and discharged as soon as possible.
- Patients with moderate contagious disease risk status may be required also to be housed in isolation.
- When patients with elevated contagious disease risk status are housed in the main inpatient areas, an effort must be made to use appropriate barrier nursing and biocontainment practices with the patient.
 - Barrier nursing precautions must be used at all times.
 - Disinfectant footbaths or foot mats may be required.
 - Stalls housing these patients should be cordoned off.
 - Empty stalls should be maintained on either side and across the aisle.
 - Using stalls at the end of aisles is preferred to stabling near main traffic corridors.
 - Once a “contaminated” stall is vacated, cleaned, sanitized, and cultured, that stall should not be reused until the results from the LARAC cultures have been returned and evaluated. The equine service chief will be given a copy of the culture results.

Enteric contagious infection

Horses frequently develop loose stools and even diarrhea for reasons other than contagious infections. Because it is clinically difficult to determine the difference, guidelines have been established to determine how the horse developing loose stool or diarrhea during hospitalization will be handled.

- Clinical signs associated often with infectious diarrhea or impending diarrhea include:
 - Inappetence
 - Fever (rectal temperature > 101.7°F, if receiving NSAID tx > 101.5°F)
 - Neutropenia (PMN < 2000/µL)
- Diarrhea is defined as fluid manure to cowpie consistency manure with a fecal pat less than 2 cm thick and one or more of the clinical signs noted above.
- Any horse admitted with diarrhea will be admitted directly to isolation.
- Any horse admitted to isolation should not enter the hospital unless for critically needed, advanced diagnostic procedures.

Enteric Precaution

Any non-neonatal horse (> 3 weeks old) exhibiting any 2 of the 3 above clinical signs in the absence of diarrhea may stay in the main wards but will have enteric precaution procedures instituted.

- Barrier nursing precautions must be used at all times.
 - Booties, gloves, and gowns are required to enter the stall or the cordoned area.
- Remove booties, gowns, and gloves and dip feet as you leave the cordoned area even if it is just to run to the exam room to get a catheter cap or needle. There is no exception.
- Use hand disinfectant as you depart the cordoned area.
- A 6’X10’ boundary area will be cordoned with rope and or tape centered on the stall door. Hang disposable gowns on a rack within this boundary. Place disposable gloves and booties in a rack within this boundary. Place Amphyl® disinfectant footbath and absorbent paper within the boundary near the stall door. Ideally, leave the stall immediately adjacent to the enteric precaution stall empty as well as the stall immediately across the hall.
- Begin, continue, or re-initiate *Salmonella* culture series and *Clostridium difficile* toxin assay. Additionally, the senior clinician may request the equine diarrhea PCR panel and equine enteric disease culture panel.
- Post the appropriate Infectious Disease Control (IDC) card and inform LARAC.
- LARAC personnel will handle manure and gutter area as if contaminated by an enteric pathogen using their IDC protocols.

Colic cases
Both medical and surgical colic case animals may develop loose stools and even diarrhea for reasons other than contagious infection due to the administration of mineral oil, dextrin sodium succinate, infusion of large amounts of fluid intravenously or directly into the bowel, and surgical manipulation and/or resection of segments of intestine as examples. Because it can be clinically difficult to determine the causes, guidelines have been established for dealing with the colic patient that develops diarrhea.

- Colic patients that have the above interventions that can lead to loose stools or diarrhea will be given a 48-hour window of exception for movement to isolation. Enteric precautions will be instituted.
- Continuation of diarrhea beyond 48 hours will require transfer to isolation.
- The 48 hour window of exception will be rescinded if the colic patient has diarrhea and any 2 of 3 of the following:
 - Inappetence
 - Fever (rectal temperature > 101.7°F, if receiving NSAID tx > 101.5°F)
 - Neutropenia (PMN < 2000/µL)

Mares and neonates
Neonatal foals frequently develop loose stools and even diarrhea for reasons other than contagious infections. Such causes include gastric ulcers, “foal heat diarrhea,” sepsis, lactose intolerance secondary to prematurity, etc. Because it can be clinically difficult to determine the difference, guidelines have been established for dealing with foals under 3 weeks of age that develop diarrhea.

- Any neonatal foal from which a pathogen (*Salmonella* spp., *Clostridium difficile*, etc.) is cultured in the stool shall be moved to isolation.
- Any neonatal foal that is *C. difficile* toxin A or B positive will be moved to isolation.
- Neonatal foal with diarrhea with clinical issues that may result in diarrhea and having one of the following findings and from which no pathogen has been isolated may stay in the main hospital with enteric precaution protocols instituted.

- • Neutropenia (PMN < 2000/µL)
○ Neutropenia (PMN < 2000/µL)
○ Inappetence
○ Fever (rectal temperature ≥ 102.5°)

Criteria for terminating enteric precaution in horses and foals
All of the following criteria must be met for discontinuing enteric precaution protocols as well as the consensus of the senior clinicians on duty.
• Diarrhea resolved or determined not to be infectious in origin, blister beetle toxicity for example.
• Inappetence, neutropenia, and fever resolved.
• Five sequential negative Salmonella spp. cultures.
• Two negative Clostridium difficile toxin A&B tests

Food Animal
The goal of the biosecurity plan is to ensure, to the degree reasonable, protection of animal handlers, the patient, and other patients of the food animal clinic.
Cases seen in the food animal clinic can be divided into four types based on risk of contagious or zoonotic disease.
Isolation cases – These are cases at high risk of transmission of zoonotic or significant pathogens.
• Any neonate or non-neonate patient with a diagnosed zoonotic or with a high index of suspicion as per the faculty clinician on the case of having a zoonotic disease (e.g., Salmonella, Cryptosporidium) or significant contagious disease (Johne’s, BVD, acute viral respiratory agents, contagious vesicular diseases, etc.) should be admitted to isolation or should be moved as soon as feasible to isolation.
• Any sick animal from farms/ranches that have a known endemic zoonotic or a significant contagious disease on the premise shall be placed into isolation immediately and not be admitted to the main clinic floor, including for initial work-up.

Special/Enteric Precautions cases – Cases with non-acute respiratory tract disease and cases with GI disease that is not considered to represent a significant zoonotic or contagious threat.
• These patients may be housed in-hospital with special handling precautions to prevent introduction or fomite spread of disease agents.
• The faculty case doctor has authority and responsibility to determine the need for Special Precautions procedures on any case.
• They may modify the general procedures outlined, as they deem necessary.
• If these cases develop a condition requiring isolation, they must be moved to isolation as soon as possible.

General hospitalized cases – All other hospitalized patients not categorized as isolation or special/enteric cases. This classification is subject to change during the period in which the animal is hospitalized.
• If possible diarrheic cases are to be placed in stall 2 in the corner of the barn away from the main traffic flow.
• In the event stall 2 is not available, stall 1 will be utilized.
Outpatient cases - Those cases presented to the clinic for outpatient procedures and routine evaluation that are considered tentatively as minimal risk to the hospitalized population.

- Cases presented to the clinic for work-up of potential zoonotic disease or contagious disease will follow the described protocol for isolation cases and not enter the main clinic floor for evaluation.
5. Isolation areas

Protocol for Small Animal
Students are instructed in appropriate handling of cases and proper isolation protocols. This includes conducting each student to isolation and walked through the processes for entering and caring for a patient admitted into isolation. (Appendix A)

Placing a patient in isolation

- Any animal suspected of having certain infectious diseases will be identified immediately on admission, the student/house officer/faculty member notified, and appropriate protocols followed to minimize exposure to healthy animals and, if applicable, personnel.
 - Establish 2 types of restricted animal access:
 - Animals suspected strongly of having the following diseases or signs should be treated as probable highly infectious cases (limited access and exposure) and, if admitted, placed immediately into isolation:
 - Acute distemper, parvo, infectious hepatitis, leptospirosis, bordetellosis (kennel cough), feline upper respiratory tract infections, or any other undiagnosed infection that appears to be contagious.
 - Restricted access for any animal with a multi-drug resistant infection (MDRI). These include:
 - Any organism susceptible to one or two antimicrobial families.
 - Gram-negative infections resistant to 3rd-generation cephalosporins (extended-spectrum beta-lactamase (ESBL) producers) and fluoroquinolones.
 - Methicillin-resistant Staph. aureus (MRSA).
- Suspect animals will be admitted to the Animal Health Center for examination via an alternate route minimizing contact with patients in the reception areas and the outpatient hospital areas. Likewise, if contagious potential is known ahead of presentation, bring patient into AHC using alternate route (side hallway between Landscape room and AHC administrative offices). If an alternate route is used, quarantine personnel physically off the alternate route until such time as that route can be properly disinfected. (Appendix B)
- If possible, owners should be instructed to leave their pet in their car until the animal can be properly admitted.
- Suspect animals should be taken immediately to Room a1511 (2nd choice room a1510) for obtainment of history and physical examination. These exam rooms are located in an area with less traffic and providing therefore less potential exposure to healthy client-owned animals and personnel. The objective of infection control involves elimination/isolation of the source, reduction of susceptible host(s), and/or interruption of transmission.
- If the animal is found to have a highly contagious disease then it is either discharged immediately via the alternative route or admitted to the Small Animal Isolation (Room a1509).
• Quarantine signage (blue contaminated room sheets) is placed on both exam room doors and directions followed for contacting LARAC for cleaning/disinfecting. (Appendix C)
• Before entering the anteroom of the isolation unit, all loose articles of clothing and equipment must be removed.
• Enter the anteroom.
• Don PPE including gown, glove, shoe covers, and face shield/mask (if warranted)
• Set up a footbath just outside the isolation room.
• Prepare the cage with cage liners, bowls, etc., as indicated or directed.
• Have the patient brought immediately to the isolation ante-room so you can assume control of the patient
• Place the patient into the isolation ward.
• To exit, remove carefully all PPE, paying special attention to prevent contamination of clothing, and just prior to exiting the ward discard PPE into the biohazard waste container.
• Step into the footbath with shoe covers, remove, and discard
• Wash your hands.
• Step into the footbath with shoes or apply disinfectant to soles.
• Enter the ante-room.
• Any item brought into isolation will stay in isolation or be disposed of with bio-hazardous materials. All supplies and equipment needed for patient care can be found in the isolation area. If an item needs restocked, notify the technician in the area.
• Use alcohol-based hand sanitizer prior to leaving the ante-room.
• The isolation ward will be indicated as “occupied” by external door signage.
• ICU personnel will be notified as to the occupancy status so video monitoring may occur.
• A clean smock should be donned over your clothing.
• Personnel are instructed to use prudence and proper patient interaction when returning to the AHC.
• A patient will be discharged only from isolation to return to their home environment via the alternative route used for admission.
• If at any time during these processes the person’s clothing becomes contaminated or soiled, they are to follow procedures as outlined to exit the isolation area and then proceed immediately to the large animal locker room (a1733 or a1732). Once there, they should remove their clothing and place those items into a biohazard bag to be taken to the CVM laundry. Proceed to shower. A set of clean clothes will be brought for you to wear.
• These processes are posted in the anteroom of the small animal isolation as reference. (Appendix D)

Protocol for Equine
Any horse admitted for the diagnostic work-up or treatment of suspected highly contagious disease (see list following) shall be admitted directly to the isolation facility.
• Any diarrhea
• Streptococcus equi
- Equine Herpes Virus 1
- Equine Influenza Virus
- Equine Infectious Anemia
- Vesicular Stomatitis Virus
- Other

Transfer to Isolation
- Any hospitalized horse meeting the definition of contagious diarrhea or developing any of the above diseases will be transferred to isolation.
- Any personnel entering or leaving this area must comply with all PPE, sanitation, disinfection, and traffic pattern requirements.
- If there is a maintenance issue in an isolation stall or building wide, a maintenance person will be expected to resolve the issue and will do so in full compliance with all PPE, sanitation, disinfection, and traffic pattern requirements.

Transfer out of Isolation
- With rare exceptions, a horse transferred to isolation will stay there until discharge.
- A consensus of senior clinicians and the service chief will be required to allow a horse from isolation to return to the main hospital.

Movement of Personnel in and out of Equine Isolation
- Equine isolation is divided into four zones denoting the level of risk of contamination.
 - Zone 1 — clean bathroom hallway and bathrooms encountered immediately when entering the keycard access restricted door on the north side of the building across from the research wing.
 - Zone 2 — the anteroom corridor connecting the stall anterooms adjoining the Zone 1 corridor on the west end and the supply room and the equine isolation nurses station on the east end.
 - Zone 3 — Stall anteroom. Each anteroom is a separate Zone 3 restricted area.
 - Zone 4 — Stall. Each stall is a separate Zone 4 restricted area.
 - Zone 4a — animal access, muck bucket, waste removal corridor.
- Keycard access to isolation is limited to equine clinicians and staff, students currently on the rotation, and LARAC personnel responsible for cleaning isolation.
- Access is via the door on the north side across from the research wing. Entry is into Zone 1 — the clean zone. This zone consists of the bathrooms and the hallway connecting the bathrooms.
- On entering Equine Isolation (Zone 1), pick up a pair of clogs and clean coveralls and proceed to the rest room. Remove your outer clothes and boots and put on the coveralls and clogs. Leave any personal equipment, such as stethoscope, thermometer, etc., in the rest room as these items should already be in the isolation stall. If a higher quality stethoscope than that provided is required, your personal stethoscope must be cleaned thoroughly and wiped with alcohol upon leaving isolation.
- Move to the bench that separates the Zone 1 hall from the Zone 2 hall into which the isolation anterooms open. On that bench, kick off your Zone 1 clogs you were
wearing so that they remain in Zone 1. Swing around on the bench and use a set of clogs designated for Zone 2. If admitting a new patient, select a pair of rubber boots to take to the stall.

- Sit on the bench that separates the Zone 2 hall from the isolation stall anteroom (Zone 3). Remove your Zone 2 clogs so that they remain in Zone 2. Swing over and place your feet into the boots you have brought with you, or that were already in the anteroom. These boots may not be worn in Zone 2 until the animal leaves and the boots have been disinfected. Cover your coveralls with an impervious gown and put on a pair of exam gloves.

- If you need to enter the animal access corridor (dirty hallway) behind the isolation stall to empty manure or trash, place over your rubber boots a pair of booties located just outside the stall door. Discard the plastic booties and place on clean exam gloves as you re-enter the stall.

- Leaving isolation involves reversing the procedures described.
 - Remove the impervious gown and gloves and wash your hands.
 - Sit on the bench and remove rubber boots then use hand disinfectant.
 - Swing over the bench and put on the clogs you left in the hall.
 - Walk to the bench that separates the Zone 2 hall from the Zone 1 hall.
 - Kick off the clogs you wore in the Zone 2 hall, swing over the bench into the Zone 1 hall, and put on the Zone 1 clogs you left there.
 - Walk to the rest rooms and change into your personal clothing or in the equine isolation nurse’s station, immediately wash your hands and use hand sanitizer.
 - Place the coveralls into the laundry hamper and put the clogs back in the hall.
 - Wash your hands and dip your boots as you leave the isolation facility.

Movement of supplies in and out of Equine Isolation

- Feed and bedding should be placed next to the people’s entrance to the animal access corridor immediately across from the feed and bedding storage shed before entering the equine isolation unit through the key card access door. Once garbed appropriately, enter the animal access corridor via the stall for which the feed and/or bedding is intended.

- Supplies such as fluids, absorbent paper, etc., may be taken through the key card access door or placed at the door near the end of the clean corridor that opens into the supply closet.

Equine Isolation Patients needing advanced diagnostic tests

- Whenever possible, diagnostic, surgical, and therapeutic procedures should be performed wherever the high-risk patient is housed, rather than moving the patient to common exam rooms or treatment areas. However, because it is impractical to duplicate expensive equipment just isolation needs only, it will be necessary from time to time to move a high-risk patient.

- If at all possible, these procedures should be performed late in the afternoon.

- It is the clinician’s responsibility to ensure that LARAC is informed of the need to move high-risk patients through the hospital so that persons can disinfect the hallway and room after a procedure is finished.
• The clinician shall inform all services assisting with the procedure about the known or suspected pathogen and appropriate barrier precautions.
• During the procedure personnel must follow appropriate barrier nursing precautions at all times.
• A horse coming from isolation into the main hospital should enter the barn through the door between equine and food animal. If an ultrasound is needed, it should be performed immediately inside this door. If radiology is required, the animal must be moved through the main corridor.
• Doors to all the wards off of the main corridor should be closed as the high-risk patient is moved through. There should be no other horses in the main corridor.
• Any manure should be removed immediately and the floor bleached after a high-risk patient passes through.

Protocol for Food Animal

Guidelines applicable to Special Precautions cases
• Cases needing special precautions are placed preferentially in the lowest traffic areas (Stalls 1, 2, and 3).
• A yellow stall sign stating special precautions is affixed to identify the occupant, and footbaths are placed at stall entrances.
• Personnel entering stall should wear gloves, an outer impermeable gown, and plastic booties over rubber boots. On exit, booties and gloves are discarded into a biohazard bag located at the stall, while gowns are hung up and can be reused if not soiled. Students are not permitted to use personal thermometers and stethoscopes. A designated stethoscope and thermometer will be provided for use with these cases. After removal of plastic booties, personnel should step through footbath. Hands are to be washed on exiting the stall, and an alcohol-based hand sanitizer used following the washing. Stall-side protective items are restocked and footbaths changed daily by the food animal senior technician.
• Following any animal movement (i.e., out of the barn to isolation) the floor will be disinfected with dilute bleach solution by a person following immediately behind the animal.
• LARAC will provide daily stall maintenance and final cleaning/disinfection according to established procedures.

Guidelines applicable to Isolation cases
Scales pens/Mature animals
• Any patient too large to be placed in indoor isolation will be placed into Scales isolation stalls. These cases include any patient with a suspected or confirmed zoonotic or highly contagious pathogen.
• Animals are to be unloaded at the gate nearest the isolation stalls and are not to be unloaded through the green panels nearest the Morgan Freeman building.
• In the event that more than one case is present in the Scales isolation facility, there will be a stall left empty between animals. If this is not possible, tarps will be hung on the stalls between cases to prevent nose-to-nose contact and fecal contamination of other stalls unless animals are from the same farm/ranch.
• A box or cart will be placed stall side (1 per stall) with all equipment/supplies needed for each case.
• Footbaths will be placed at the entrance to each occupied stall and at the entrance/exit from Scales.
• Traffic will be limited through the area when isolation cases are present.
• Personnel entering stall should wear gloves, an outer impermeable gown, and plastic booties over rubber boots. On exit, booties, gloves, and gowns are to be discarded into a biohazard bag located at the stall. Students are not permitted to use personal thermometers and stethoscopes. A designated stethoscope and thermometer will be provided for use with these cases. After removal of plastic booties, personnel should step through footbath. Hands are to be washed upon exit of the stall and an alcohol based hand sanitizer used following washing. Stall-side protective items are restocked and footbaths changed daily by the food animal senior technician.
• In the event that examination and advanced diagnostics need to be performed animals will be restrained in the stall or in the hydraulic chute at the scales facility. Following animal movement the ground in the path of animal movement and working facility will be disinfected using dilute bleach.
• In the event that an animal is too fractious or cannot be managed due to patient attitude at the Scales facility it will be discharged to the client and will not enter the main clinic floor.
• Following discharge of the patient the stalls will be cleaned by LARAC according to protocol and the stalls cultured as described above.

Small Ruminant/Calf Isolation

• All personnel are to enter the building from the main entrance. Patients will enter the facility through the side door and are not to be taken through the main entrance.
• When admitting a patient into the isolation facility a person will enter the main entrance and don proper isolation attire according to protocol. The animal will be handed off from a handler on the side entrance to the person within the isolation facility.
• The food animal technicians will stock the isolation facility.
• Routine equipment and supplies in isolation are not to be removed from the building. Special equipment (ultrasound, surgical packs, etc.) taken into can be removed is disinfected using biocide, bleach, or sterilization. Any medication taken into isolation proper will not be removed and will be discarded following discharge of the patient.
• Each pen will have an individual chlorhexadine scrub and alcohol container. These containers will be used for only 1 patient and following discharge all remaining gauze will be discarded and the container sterilized. When there are not patients in isolation the containers will not be filled.
• Each pen will have an individual footbath charged with 1 Stroke (1 ounce/gallon water).
• Upon entering isolation a footbath (1 Stroke (1 ounce/gallon of water) will be walked through. All personal equipment and coveralls are to be removed. Coveralls will be replaced with designated isolation coveralls or with an outer impermeable
gown. Plastic boot covers and gloves will be worn at all times in isolation. After donning all required PPE, another footbath will be walked through into the isolation room. When one exits isolation, the footbath will again be walked through. Plastic booties and gloves will be discarded into a biohazard bag. Gowns may be reused (for the same patient) if not soiled. Coveralls will be placed into a laundry basket to be emptied once daily by the food animal technician. The footbath will be walked through again. Hands will be washed and hand sanitizer used before exiting the facility.

• In the event that there is more than one patient in isolation, the same PPE will not be worn while examining/treating each animal. All of the procedures described above will be followed before handling another patient.
• Students are not permitted to use personal thermometers and stethoscopes. A designated stethoscope and thermometer will be provided for use with these cases.
• Patients will be housed in individual pens with no nose-to-nose contact between animals.
• Following an animal’s discharge, pens will be cleaned by LARAC personnel according to standard protocol and will then be cultured before another patient is placed into the pen. If another case is admitted into isolation from the same farm/ranch, it can be placed into the pen before culture results being reported.
• Boots should be disinfected before entering the main hospital floor.
6. General cleaning and surveillance

Disinfectants
The effective use of disinfectants requires proper knowledge of spectrum of activity, correct delivery and application, appropriate concentration and contact time, and compatibility with other chemicals. The following information is provided to help. Included links contain additional useful information regarding disinfectants and disinfection procedures.

Center for Food Safety and Public Health at Iowa State. http://www.cfsph.iastate.edu (CFSPH Main Menu->Infection Control -> Disinfectant Resources)

Only disinfectants that have been approved by the AHC or by LARAC may be used. It is not permissible for any student/employee to purchase and use unauthorized disinfectants or detergents due to potential interactions with other chemicals.

Alcohol
Alcohol, ethanol or isopropyl alcohol, is rapidly bactericidal to vegetative forms of bacteria, but ineffective against bacterial spores. The bactericidal activity drops sharply at concentrations less than 50%, with optimal concentrations between 60-90% by volume. Concentrations higher than 90% are less effective as some water is required for efficacy. Alcohol at effective concentrations denatures proteins causing membrane damage and cell lysis. Alcohol is fast acting and kills most bacteria within 5 minutes. It is not considered a high level disinfectant; however, due to its lack of efficacy against spores and isopropanol’s ineffectiveness against non-enveloped viruses (ethanol is considered virucidal.)

Aldehydes
Glutaraldehyde and formaldehyde denature proteins and disrupt nucleic acids. Glutaraldehyde is the most commonly used aldehyde disinfectant. It is effective against bacteria, fungi, viruses, and mycobacteria. Aqueous solutions of glutaraldehyde are acidic and are not sporicidal. It is considered to be a high level disinfectant if it is activated (made alkaline by an alkalizing agent). Once activated by an alkalizing agent that increases the pH to 7.5-8.5, it is sporicidal but has a limited shelf life of 14 to 28 days. Some reports question its efficacy against mycobacteria, thereby indicating that alcohol or phenol may be a better disinfectant. But, in general, most experts consider glutaraldehyde effective. Glutaraldehyde’s efficacy against Cryptosporidium is controversial, with some reports indicating it is an effective disinfectant and some indicating that it is not effective. Glutaraldehyde is relatively non-corrosive to metals, rubber, plastic, and cement and is used for disinfection of equipment, such as endoscopes. It maintains antimicrobial activity in the presence of organic matter, although it is always best to remove organic matter before any disinfection. Caution should be exercised, as aldehydes can be highly irritating
and toxic to humans or animals either by contact or inhalation of fumes. Aldehydes are known to have carcinogenic potential and personal protective equipment should be worn when handling these chemicals.

Chlorhexidine
Chlorhexidine is considered to be very effective against vegetative forms of gram negative and positive bacteria, as well as *Mycoplasma*. It is variably effective against *Mycobacterium* with some mycobacteria being sensitive while others are highly resistant. It has limited to no effect on spores, viruses, *Cryptosporidium*, rickettsia, or *Pseudomonas*. It exerts its antimicrobial effect by reacting with negatively charged groups on cell membranes, thereby altering bacterial permeability. Chlorhexidine can only exert this function within a limited pH range of 5.0-7.0, and is easily inactivated by soaps and anionic detergents. It does retain antimicrobial activity in the presence of organic matter, including use on skin surfaces. It is relatively non-irritating and non-toxic to mammals but is toxic to fish. It should not be discharged into the environment. Chlorhexidine is generally non-corrosive to most materials. Three and one-half ounces of chlorhexidine per gallon of water provides approximately a 0.1% concentration solution and is commonly used to soak items that come into contact with patient skin such as brushes, halters, and twitches. Soak time should be at least 15 minutes.

Chlorine
Sodium hypochlorite or bleach, is used widely, fast acting, cheap, and has a broad spectrum of activity. It is relatively corrosive, especially at higher concentrations in addition to being relatively unstable. The efficacy of bleach is directly related to the level of available chlorine in the solution. Undissociated hypochlorous acid, which is dependent on pH, is significantly more active than hypochlorite ion (OCl⁻). At higher pHs, HOCl dissociates into hypochlorite ion with microbiocidal activity decreasing. HOCl is proposed to work by inhibition of key enzymatic reactions within the cell, protein denaturation, and inactivation of nucleic acids. It has a broad spectrum of activity as demonstrated by being effective against vegetative gram negative and positive bacteria at less than 1 PPM and mycobacteria at 25 PPM within seconds. A 100 PPM solution kills 99.9% of *Bacillus subtilis* spores within 5 minutes and fungal agents in 60 minutes. A concentration of 1000 PPM is required for mycobacteria. Most viruses are inactivated within 10 minutes at 200 PPM, although 33,000 PPM has been recommended for Foot-and-Mouth Disease virus. It has not been shown to be effective against *Cryptosporidium*. Commercial bleach preparations are typically 5.25% NaOCl with approximately 50,000 PPM available chlorine. Light and some metals, as well as some detergents, organic debris, and vaporization of volatile chlorine gas when left in open containers rapidly inactivate chlorine compounds. Over the course of 30 days, the levels of available chlorine will have been reduced by half or more even in closed polyethylene containers. There was no decomposition of NaHClO solution when stored in a closed brown glass bottle. Hypochlorites should never be mixed with acids or ammonia as this will result in the rapid release of toxic chlorine gas.

Bleach dilutions and the resulting chlorine concentration

| 5.25% | Bleach dilution | Chlorine |

Bleach solution ratio

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Per unit H₂O</th>
<th>PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:500</td>
<td>1.5 tsp / gal H₂O 7.5 ml / gal H₂O</td>
<td>100</td>
</tr>
<tr>
<td>1:200</td>
<td>1.5 Tbsp / gal H₂O 22.5 ml / gal H₂O</td>
<td>250</td>
</tr>
<tr>
<td>1:100</td>
<td>1.25 oz / gal H₂O 37.5 ml / gal H₂O</td>
<td>500</td>
</tr>
<tr>
<td>1:50</td>
<td>2.5 oz / gal H₂O 75 ml / gal H₂O</td>
<td>1000</td>
</tr>
<tr>
<td>1:10</td>
<td>1.5 cups / gal H₂O 360 ml / gal H₂O</td>
<td>5000</td>
</tr>
</tbody>
</table>

Iodine compounds

Iodine compounds are similar in action to hypochlorite compounds. Iodine compounds may be even more sensitive to inactivation by organic debris. Iodine also is subject to inactivation by sunlight. Iodine compounds are relatively broad spectrum in their activity and work by denaturing proteins, thereby interfering with enzymatic reactions within the organism and disrupting cell membrane integrity. Concentrated iodine compounds are irritating to skin, corrosive to rubber and metal, and will stain clothes, skin, and other organic material.

Iodophors

Povidone or tamed iodine solutions are used widely for skin decontamination. An iodophor is a combination of iodine and a carrier that provides a sustained release reservoir of iodine thereby releasing small amounts of free iodine into solution. Free iodine enhances antimicrobial activity and more rapid bactericidal activity compared with full strength povidone iodine solutions. It is relatively inexpensive, non-toxic, and non-irritating unless a person has developed a specific hypersensitization through previous repeated contact.

Oxidizing agents

Hydrogen peroxide works by the production of hydroxyl free radicals, which can denature membrane lipids, DNA, proteins, and other cellular components. It is available commercially in most stores as a 3-10% solution, but can be purchased at much higher concentrations, up to 90%. It has broad-spectrum activity against most vegetative gram-positive and negative bacteria, although it is considered somewhat more effective against gram-positive bacteria. The production of catalase and other peroxidases can render these bacteria resistant to lower concentrations of hydrogen peroxide. Higher concentrations (in the 30% range) and longer contact times are required for sporicidal and virucidal activity.
Even then, some non-enveloped viruses may be resistant. Hydrogen peroxide breaks down into environmentally non-toxic byproducts. It can cause drying and irritation of skin. Virkon-S® (potassium peroxymonosulfate and sodium chloride) which has been used as a surface disinfectant is a peroxynitrite molecule, organic acid, and surfactant combination with wide microbial spectrum of activity and some efficacy in the presence of organic material. Virkon-S® is the disinfectant recommended most often for foot-and-mouth disease prevention. High concentrations of hydrogen peroxide can corrode metal, vinyl, and rubber surfaces.

Accelerated hydrogen peroxide is a relatively new class of disinfectants but is superior in that it requires less contact time (1-5 minutes), maintains activity in the face of organic debris, and contains a detergent. They all have a broad spectrum of activity and are effective against non-enveloped viruses and bacteria.

Phenols

Phenols are broad-spectrum disinfectants that function by denaturing proteins and inactivating membrane-bound enzymes to alter the cell wall permeability of microorganisms. Phenols are typically formulated in soap solutions to increase their penetrative powers, and, at 5% concentration, are considered bactericidal, tuberculocidal, fungicidal, and virucidal for enveloped viruses. Phenols are not effective against non-enveloped viruses and spores. Phenols do maintain activity in hard water and in the presence of organic matter and have some residual activity after drying. Phenolic disinfectants are generally safe for humans, but prolonged exposure may cause skin irritation. Phenols can accumulate in porous materials, and the residual disinfectant can cause tissue irritation. Concentrations over 2% are highly toxic to all animals, especially cats. Neonates have shown increased susceptibility to toxic effects of phenols.

Quaternary ammonium

Also known as “quats” or QACs, these compounds are cationic detergents that are attracted to the negatively charged surfaces of microorganisms where they irreversibly bind to phospholipids in the cell membrane and denature proteins, thereby impairing permeability. QACs can be from different manufacturing “generations” and their chemistry may vary, with later generations being more germicidal, less foaming, and more tolerant of organic debris. QACs are highly effective against Gram-positive bacteria, and have good efficacy against Gram-negative bacteria, fungi, and enveloped viruses. They are not effective against non-enveloped viruses or mycobacteria and are considered sporostatic but not sporicidal. QACs have some residual effects, keeping surfaces bacteriostatic for a brief time. They are more active at neutral to slightly alkaline pH but lose their activity at pHs of less than 3.5. QACs are considered stable in storage, but are, in general, more easily inactivated by organic matter, detergents, soaps, and hard water (this may vary with the “generation”). QACs are generally considered non-irritating with low toxicity at typical working dilutions, but this characteristic may vary with generation and product to a certain degree. However, QACs are toxic to fish and should not be discharged into water sources (i.e., streams, ponds, lakes).

Small Animal

Cleaning and decontamination practices
• Animal holding cages within each of the service areas will go through a cage washer sterilization every 8 weeks or as scheduled. This includes any area where cages are used for patient holding. Service area and room numbers are: ICU A1502; Small Animal Internal Medicine ward #2; Community Veterinary Services wards #3, 4, 5, and 6; Small Animal Surgery wards #8 and 9; Anesthesia Recovery A1709; Diagnostic Imaging A1808; and Isolation (after each patient).
• Confirmation of sanitization will be documented using thermal sensitive tape applied to the service area cages and passed through the cage washer. This verifies that the cage reaches 180 degrees for 10 minutes.
• When a ward is broken down for whole room sanitization (performed a minimum of 3-4 times per year or as appropriate), random RODAC plating will be performed within 12 hours post cage washing/cleaning before animal use. (Note – RODAC plating of Isolation and ICU will include multiple surfaces such as IV pumps, door handles, etc.) Plates are read at 48 hours. If colony counts are over 31, culturing of the organism for identification and sensitivities will be done and the area in question again cleaned and disinfected. RODAC plates will be collected for colony counts and the process repeated until the colony count is less than 30 or growth of the identified organism is negative for three consecutive tests.
• Students, clinicians, and technicians are encouraged to frequently wash their hands, especially between patients. Signs placed throughout the Animal Health Center serve as a reminder.
• Technicians should disinfect clipper blades, leashes, muzzles, and other appropriate items between patients.
• Containers holding antiseptics (e.g., 4x4 gauze soaked in chlorhexidine or povidone iodine scrub, and “cold packs”) may allow growth of an organism resistant to certain disinfectants. Once per 6 week student rotation containers should be emptied, cleaned, either autoclaved or washed in sodium hypochlorite (Clorox), and dried before restocking. Logistically, the service may wish to have two to three sets of such containers to allow rotation.
• Janitorial services are required to change mop water at least daily, vacuum cleaner bags at least weekly, and use vacuum cleaners with a sealed HEPA filter system. Mop waters are changed at the beginning of each 12 hour shift and as custodians move within the Animal Health Center from one area to another. Floor scrubbers that do not recycle water are used in most areas (IPC Eagle). These machines provide clean water for scrubbing/cleaning, and the dirty water is vacuumed from the floor surfaces and discarded.

The following protocols should be followed for animals with MDRIs
• The cage should be identified with a green card indicating it has a MDRI. Small animals should be identified with a green temporary ID collar.
• The technician shall add a warning to the medical record of the animal by using the “OTHER” designation on the red, colored patient warning page. This warning may be removed if two negative cultures confirm that the infection no longer exists, and the clinician believes the infection has resolved.
• The animal should be held in the same cage or stall during its entire stay in the AHC. This cage / stall should be as far removed from other patients as logistically feasible.
• Personnel should wear disposable gloves and a gown when handling MDRI animals. They should wash their hands and decontaminate* any instruments used (e.g., stethoscopes, bandage scissors, thermometers, etc.) after contact.
• When the animal is taken to another location, such as radiology or surgery, that service must be notified that the animal has a MDRI and the area subsequently decontaminated*.
• When a small animal is transported to another area via gurney, the transport device should be decontaminated* promptly and then cage-washed.
• These animals should typically be handled last when treating a series of animals.
• When the MDRI infected animal is discharged or dies, the cage and its wheels should be decontaminated * on site and taken then to the cage washer.
• Reference charts regarding disinfectants and their action/activity are available within the isolation unit for review. Appendix E

* Use CDC “Intermediate level disinfectant” – see Appendix F (this does NOT include chlorhexidine (Nolvasan®).

Additional resource for common disinfectants used in veterinary medicine, include class, application and activity, and are listed in Appendix G.

Equine Attire

• The MSU-AHC promotes the use of hospital dedicated attire in order to decrease the risk of carrying infectious agents home where people or animals may be exposed.
• All personnel are required to wear clean professional attire, clean protective outer garments, and clean, appropriate footwear at all times when working in outpatient areas of the Equine Hospital.
• This attire should be appropriate to the job at hand (e.g., coveralls and heavy boots or shoes are probably the most appropriate footwear and, when working with large animal patients performing tasks accompanied by a high risk of contamination by infectious materials, wear appropriate, protective outer garments-PPE).
• All personnel must wear sturdy boots or shoes that can be cleaned and disinfected at all times while working in the Equine Medicine and Surgery service. Personnel must be willing to disinfect footwear while working.

General cleanliness and hygiene

• Maintaining hospital cleanliness and appropriate personal hygiene are responsibilities of ALL personnel working in the Equine Hospital.
• Hands must be washed or cleaned with an alcohol-based hand sanitizer before, and after examining each patient.
• Clean exam gloves must worn when handling high-risk patients (i.e., infectious disease suspects, or highly susceptible patients such as those on antibiotics, colic cases, or neonatal foals).
• Surfaces or equipment contaminated by feces, secretions, or blood must be cleaned and disinfected immediately by personnel in charge of the patient.
- Student workers should wipe stall door handles with alcohol twice daily.
- Boot brushes and footbaths are located at the end of each hallway. Before exiting a stall, knock the excess shavings off your boots. Use the boot brush at the end of the hall to remove remaining gross debris from your boots and then dip boots in the phenol footbath and step onto absorbent paper as you exit the hall into a main corridor. Student workers will change these footbaths and absorbent paper once to twice daily. The current footbath contains One-Stroke at 15ml/gallon dilution.
- Exam rooms will be cleaned with a detergent first and then sprayed with Oxivir® in an Ortho® sprayer set at 8 oz/gallon. Oxivir® is accelerated peroxide. It is a disinfectant and not a cleaning agent and should be used only after cleaning by spraying a light coating around the room.
- Horses should have their feet picked clean as they exit their stall unless it is dangerous to do so as with a neurologic horse or one that is very lame.
- Do not wear shoes/boots dedicated to the AHC to your home.

Disinfection of equipment

- All instruments, equipment, and other objects, including floats, mouth specula, endoscopes, grooming tools, clipper blades, etc., must be sterilized or disinfected between uses on different patients.
- Stainless steel buckets are to be cleaned, scrubbed with dilute chlorhexidine or dilute bleach, and sent for sterilization, which will be indicated by activated sterilization tape holding the bucket handle to the bucket.
- Stomach tubes will not be re-used on any patient other than the original patient to which it was assigned. After that patient is discharged, the stomach tube will be discarded.
- Reflux is only to be collected within buckets specifically designated for that purpose. These buckets must be cleaned of organic debris and then scrubbed with dilute bleach solution between uses.
- Reusable dose syringes and funnels must be disassembled, cleaned of all organic debris with a detergent, and then soaked for 10 minutes in dilute bleach 250 – 500 PPM solution.
- Stethoscopes owned by personnel may be used in the main hospital, but should always be wiped with alcohol between patients. Hospital-owned stethoscopes should be used in isolation unless at the clinicians’ discretion a higher quality stethoscope is required for diagnostic purposes, but the stethoscope must be cleaned thoroughly and sanitized before being used again.
- Digital thermometers should be cleaned thoroughly to remove any debris and then wiped with alcohol between patients.
- Hoof picks should be cleaned thoroughly to remove any debris and wiped with alcohol between patients.
- Twitches must be cleaned thoroughly and soaked in 250 PPM bleach or 0.5% chlorhexidine for 10 minutes after each patient.
- Any other instruments carried routinely by personnel, such as bandage scissors, must be cleaned and wiped with alcohol between patients.

Containers holding antiseptics (e.g., 4x4 gauze soaked in chlorhexidine or povidone iodine scrub and “cold packs”) have been known to allow growth of organisms resistant to those
disinfectants. On a weekly basis containers used for antiseptics in each exam room must be emptied, cleaned, either autoclaved or washed in sodium hypochlorite (Clorox), and dried before restocking. Logistically, the service may wish to have two to three sets of containers that allow for rotation.

Guidelines for receiving and managing patients

Stall Assignments
- Equine technicians or clinicians make stall assignments. Check with them before putting an animal into a stall.

Tack
- Tack owned by clients should be sent home with the client. Hospital owned halters would be used while the animal is hospitalized. All tack should be disinfected between patients by soaking halters, lead ropes, brushes, eye masks, etc., in chlorhexidine solution or muzzles in dilute bleach.

Salmonella Surveillance
- Because of the risks and consequences associated with nosocomial salmonellosis, the MSU-CVM Equine service maintains an active surveillance policy. All hospitalized patients will have five serial stool samples submitted for *Salmonella* spp. culture. If the patient’s stay is longer than 5 days, and any signs of possible GI disease develop, another series of five serial *Salmonella* cultures will be initiated.

Coggins Status
- Because of the risks, consequences, and legal requirements associated with equine infectious anemia and the congregation of horses in a public setting, the MSU-CVM Equine service requires all horses arriving on the premises to have had a negative Coggins test performed within the past 12 months. If an animal should arrive without a negative Coggins within the past 12 months, a test sample shall be submitted immediately. Should a horse arrive at the MSU-CVM without a negative Coggins within the past 12 months and demonstrate signs compatible with EIA, said horse will be moved immediately to isolation. Should a horse have a negative Coggins within the past 12 months but be exhibiting signs compatible with EIA, said horse should be considered strongly for transfer to isolation.

Patient Records and Medications
- Medical records will be maintained in the equine nurses’ station in the records’ rack with the designated record using stall number for that patient unless the records are being used in rounds or are currently being updated. The medical records for horses in isolation or enteric precaution should not go the stall.
- Medications may be kept in a carryall on the shelf of the patient’s stall or in the blue boxes on the wall of the equine nurses’ station. After discharge, any unused medication should be discarded or returned to Pharmacy. The blue carryall and the blue box should be cleaned and bleached before use for the next patient. The shelf on the front of the stall door should be placed in the stall so that it is disinfected when the stall is disinfected.
Stall Cards and Treatment Orders

- A stall card must be posted at the time a patient is admitted and placed in a stall. Affix a standard UVIS patient/client sticker to an index card and place it in the cardholder on the stall door. When an animal leaves, throw the card on the floor in the open doorway to let LARAC know the stall has been vacated. It is helpful also to leave LARAC personnel a note on the whiteboard by the LARAC barn office.
- Daily treatment orders must be posted each morning on each stall door. Physical exam data are filled in the appropriate boxes when the exam is performed. Initials are placed in the appropriate treatment box when the treatment is performed. Hands of CVM personnel should be sanitized with alcohol before handling the treatment sheet as this document becomes part of the permanent record. If a treatment sheet should become soiled with blood, manure, or any other bodily fluid, it must be transcribed onto a blank treatment sheet and initialed by the student on the case before placing the sheet in the record.
- Horses in isolation require two treatment sheets; one in the isolation stall where the horse resides and one on the equine nurses’ station door where treatments will be transcribed to a sheet that will be added to the medical record.

Feed and Water

- All grain and other supplements including those provided by the client, must be stored in covered containers with tight fitting covers. Because the proper handling of client provided feed and supplements cannot be ascertained, such feed should not be stored in the hospital feed room to ensure that they are not given mistakenly to another animal.
- Hay is provided to hospitalized horses in either hay nets or removable hayracks that hang from the wall. When an animal is discharged, hay nets must be soaked in 0.1% chlorhexidine solution for at least 30 minutes. Hayracks will be removed and sent to cage wash for disinfection.
- Water buckets are placed in the feed room after they have been washed and sanitized in cage wash. Clean water buckets are placed in the stall for each patient. The water buckets are filled from the spigot at the back of each rear door. Stall buckets should not be filled or rinsed with the hose in the back dirty aisle way. Buckets should be rinsed at least two or three times a day from the spigot water at the back stall door and the water then emptied gently into the drain out the back stall door taking care not to allow any water to splash back up out of the drain onto the bucket that is then refilled with water from the clean spigot.

Patient Discharge

- Before discharge, clients or their agents must be instructed about infectious disease hazards associated with the patient and recommendations about control of such hazards on home premises.
- Upon discharge, notify LARAC especially if the animal is suspected of having a contagious disease so LKARAC personnel will know to place a card on the door notifying personnel of the status of the stall and culture results.
Students, staff, and faculty are responsible for breaking down the shelf on the stall door and cleaning the carryall and any other equipment on the shelf and the medication box in the equine nurses’ station. Any fluids, IV lines, fluid pumps, etc., in the stall also need to be removed. The shelf may be placed in the stall for disinfection.

LARAC cleaning and culturing protocol
An animal hospital is confronted inherently with dealing with and caring for animals with infectious diseases. Trying to prevent the spread of such infectious organisms to other animals and humans must be paramount in our husbandry management. To be successful in this endeavor all persons involved in the care of animals and their environment must be aware of and follow all infectious disease containment procedures. There must be free and open communication among AHC equine clinical staff, LARAC personnel, and facilities personnel so that all are made aware of a suspicious or confirmed contagious disease. Such communication allows appropriate infectious disease containment practices to be initiated and followed in a prompt and thorough manner. The most common infectious disease agents encountered in the equine clinic of AHC are enteric pathogens (e.g., *Salmonella* spp.) and respiratory pathogens (e.g., *Streptococcus equi*). Presented below is a written program for the initiation of an infectious disease control (IDC) program and the steps required to carry out such a program.

Determination of suspicious or confirmed infectious disease
On admission to the hospital each horse has a stool sample submitted for culture in an effort to identify any potential carriers of enteric pathogens. During hospitalization each animal’s clinical status and laboratory values are evaluated on a continual basis to determine improvement or change in the animal’s condition. If conditions present that indicate an infectious process (e.g., soft stool, anorexia, fever, leucopenia, purulent nasal discharge, sub-mandibular swelling) the equine clinician in charge of the case will determine if the animal is to be transferred to the equine isolation facility or if the change in condition is not so dramatic (e.g., appetite and attitude still good, soft stool can be attributed to medical management, afebrile, lab work WNL, dry cough) the clinician may decide it is appropriate to continue treating the animal in the hospital with the initiation of certain precautionary measures and further diagnostic tests. Once it has been determined that the change in the animal’s condition warrants initiation of precautionary measures, LARAC needs to be notified promptly.

Visual Signage to alert staff to initiation of Infection Disease Control Measures

Red Card – Indicates a “sick” animal with a probable infectious disease process supported by diagnostic confirmation of a pathogenic organism and/or supporting clinical presentation (anorexic, febrile, depressed) and lab data (leucopenia). It is considered standard practice that an animal presenting with these signs warrants transfer to the equine isolation facility.

Yellow Card – Animal presents with or develops a potentially infectious bodily discharge (e.g., soft stool or diarrhea, purulent nasal discharge, cough, wound drainage) but remains alert with good attitude, good appetite and stable clinical lab data, and therefore does not
meet the criteria for movement to isolation. However, the animal’s condition warrants continued observation and the use of precautionary measures in handling and management. This situation is classified often as “enteric precautions” by the equine AHC staff.

Responsibilities of communicating need for IDC measures

Equine clinical staff is to

- Communicate to the LARAC staff via written communication the presence of a known infectious or potentially infectious case in the clinic. Pertinent information that must be shared include: the *client animal*; the *stall number*; the *clinical problem that is causing the initiation of protective measures*; and *is the horse is being transferred to isolation or remaining in the clinic*. Filling out an Infectious Disease Control (IDC) notification card (sample below) and attaching it to the back of an appropriately numbered and colored (red or yellow) stall card best communicate this information. This card with its attached identifying information is then placed in the upper left hand corner of the white board by the LARAC team leader’s office in the area marked “IDC notice.” These cards can be found in a box located in the equine nurses’ station.

```
Notification of IDC Measures

Date _________

Client/Horse Name: ________________

Clinician in charge: ______________

Problem initiating precautionary measures: _________

Plan transfer to Isolation? Yes  No
```

- If during normal working hours, in addition to written notification, verbally communicate also the initiation of IDC measures directly to a LARAC team leader and/or the LARAC individual working in equine that day. During the week this person is usually a student worker. This notification will help insure prompt initiation of necessary protective measures.
- Initiate, communicate, and maintain infectious disease control measures to be followed by the veterinary students, technical support staff, and the clinical staff in the daily care of the animal.

LARAC staff responsibilities

- Once LARAC has received notification of initiation of IDC measures, these steps are to be followed:
Verify information obtained from the IDC notification card.

Place the appropriate numbered and color-coded card (red or yellow) on the back door of the stall involved.

Weave yellow caution tape through the nylon gate at the end of the drain hallway involved. This entire drain hall is now considered contaminated and special precautions are required upon entering and exiting this hallway. Keep the nylon gate closed to discourage random entrance into the corridor.

Hang an orange biohazard bag at the end of the drain hallway involved to use as a receptacle for used PPE materials. These bags and PPE can be found in the glass cabinet in the cart room. Also, make sure there is a full container of hand sanitizer at this end of the drain hallway.

Empty and remove muck buckets belonging to the animal in question and replace them with IDC muck buckets (black with bold orange stripe). The removed muck buckets are to be placed outside the exterior door of the cart room for thorough cleaning and sanitization.

Assure that the LARAC worker assigned to equine is aware of the initiation of IDC measures and familiar with all that that entails.

Notify the LARAC animal health technician of the presence of any cases requiring IDC measures so that it can get his or her attention.

Follow established precautionary measures until the horse has been discharged, the stall cleaned, sanitized, and cultures obtained.

Infectious Disease Control (IDC) Measures

Stalls

All occupied stalls are picked several times a day. The picking of the stall is done by the veterinary students assigned to the case so that they may evaluate thoroughly the animal’s overall condition. Manure is placed into a muck bucket that sits in the drain corridor outside the back stall door. Students are NOT to enter the dirty (contaminated) drain corridor! The muck buckets are emptied from the drain hall into the dump cart that is rolled into the dirty hallway at the dirty end of each drain hall. LARAC personnel are responsible for emptying the muck buckets and then attempt to do this as often as needed during their routine daily tasks. If students need muck buckets emptied or have a need for more muck buckets, contact the LARAC worker and ask for help.

Standard procedures for emptying the muck buckets of manure and soiled bedding

- Only LARAC workers should enter into the dirty drain corridors. Personnel should wear gloves and eye protection when dumping muck buckets on a routine basis. Make frequent visual rounds to keep all muck buckets emptied in a timely manner.
- A foot brush and 10% bleach foot spray should be used on the bottom and sides of shoes before exiting the dirty drain corridor. Hands should be sanitized before exiting the hallway with an alcohol based hand sanitizer located at the end of the dirty drain corridor.
- **When cautionary measures are in place, whether coded yellow or red, PPE (Personal Protective Equipment) is required when entering and working in the involved dirty drain corridor.** PPE should include gown, gloves, eye protection, and mask. This equipment can be found in a cabinet in the cart room.
The PPE should be worn whenever an individual is working within the involved dirty drain corridor. The muck buckets belonging to the “infectious” horse, denoted by a bold orange stripe going around the outside of the bucket, should be emptied last. When work within the dirty drain corridor is complete and before you exit the hallway, the PPE should be removed and disposed of by placing it in a biohazard bag at the end of the drain corridor. After removing debris from the bottom of your boots by using the boot brush and spraying boots with the 10% bleach solution, and discarding your PPE and removing gloves, your hands should be sanitized using an alcohol based hand sanitizer located on the wall at the end of each drain hall. The dirty drain hall, requiring precautionary measures, should be the last hallway done in order to diminish spread of disease. The dump cart should be rinsed and sprayed with 10% bleach after it has been dumped and before returning to use.

Stalls are stripped routinely and re-bedded every 2 to 4 days (twice a week) for the animals’ comfort and to diminish accumulation and spread of enteric pathogens. An increase in this frequency is done at the request of the clinician.

Stall and implement care following discharge of animal

- After an animal has been discharged, the stall is stripped of all bedding, the interior is scrubbed with detergent and water to remove organic debris, and is sanitized with an accelerated peroxide compound (for example, Oxiwir® @ 8oz/gal water) or 10% bleach (discourage due to extensive corrosion). **If the stall was used under IDC precautions,** notify the LARAC animal health technician that the animal has been discharged so that a culture can be collected post-cleaning.

- The stall implements, muck buckets, manure forks, shovels, and brooms, are removed from the vicinity, scrubbed with detergent and water to remove organic debris, rinsed, and sprayed with 10% bleach solution or accelerated peroxide compound at the appropriate dilution.

- Stall buckets and feeders are removed from the stalls, scrubbed with detergent and water to remove gross organic debris and are then sent through the cage washer and sanitized before reentering the system. Routinely, buckets and feeders go through the cage washer located in the CVM basement.

- **In the case of a real or suspected infectious disease process,** buckets and feeders from the stalls involved are transported outside via the cart room exit, scrubbed to remove organic debris, and then taken to the 1A cage washer to avoid transport of these contaminated articles through clean corridors.

- Once the stall has been cleaned and sanitized, a strip of yellow caution tape is placed around the door bar of the front stall door as an indication the stall has been cleaned but should NOT be used until cultured and cleared for use. Notify the LARAC animal health technician that the stall cleaning and sanitization have been completed.

- A LARAC animal health technician (Jamie Walker) will come and collect cultures from the prepared stall of an infectious or potentially infectious horse. After cleaning and sanitizing the stall, it is only necessary for the surfaces to be dry at the time cultures are obtained. Cultures need to be collected no later than 12 hours after sanitization. Once the cultures are obtained, a sign will be placed on the front of the stall door that states “Do Not Use Stall. Cultures Taken” and the date cultures...
were obtained. As a general rule, 2 to 3 days pass from the time cultures are taken to the time the results are available for review. If the culture results are acceptable, the sign will be removed and the stall is ready to return to use.

Maintenance of Drain Hallways
The drain hallways are swept, scooped, and rinsed, and the drains sanitized ONCE A DAY and as needed. In cleaning the drain hallways be careful not to contaminate the interior stalls by inadvertently forcing dirty water under the back stall doors. After cleaning, sanitization is accomplished by spraying down the drain hallway floors and grates with an accelerated peroxide compound (for example, Oxivir® @ 8oz/gal water) or 10% bleach (discouraged due to extensive corrosion) and spraying waste water into drain. **NOTE:** When cleaning the drains, water must be running at both ends. Allow floors to dry.

Maintenance of Muck Buckets

Stall
- Each horse is assigned at least two muck buckets that are situated in the drain hallway outside the back door of that horse’s stall. LARAC is responsible for emptying and maintaining muck buckets.
- The muck buckets within the drain hallway are emptied on a regular and PRN basis.
- Once a day, at the same time the drain hallways are cleaned and sanitized, the muck buckets are rinsed of gross debris and sanitized with an accelerated peroxide compound (Oxivir® at 8oz/gal water, for ex.) or 10% bleach solution after emptying.
- Muck buckets are rotated out on a weekly basis and replaced with fresh, clean ones. This usually occurs on Mondays.
- Horses that are under IDC measures are assigned specially marked muck buckets that are black with a bold orange stripe running around the bucket.

Treatment Rooms (x4)
- The muck buckets that are used in each of the equine treatment rooms are dumped and replaced with a CLEAN muck bucket twice a day (the first thing in the morning and the last thing in the afternoon).
- The dirty muck buckets that have been rotated out are placed outside the exterior door of the cart room and are scrubbed with a detergent, rinsed, and sprayed with an accelerated peroxide compound (Oxivir® at 8oz/gal water, for ex.) or a 10% bleach solution so that they are available for the next rotation.
- Clean muck buckets available for use are stored on a rack outside the exterior door of the cart room.
- Shovels used to scoop manure up in the treatment rooms are removed, treated, and rotated in the same manner.

Maintenance of General Passage Hallways
These include the hallways on either side of the equine nurses’ station, the main hallway and each of the three stall corridor hallways.
- Each of these hallways is swept and sanitized using the electric floor scrubber with an accelerated peroxide compound (Oxivir® at 8oz/gal water, for ex.) or 10% bleach
(discouraged due to extensive corrosion) twice each day (first thing in the morning and the last thing in the afternoon.)

- If a situation arises that does not allow access to these hallways at the time the cleaning is scheduled (e.g., hallway is occupied by animals, rounds are in progress, excitable horse present, too much clutter blocking access, request by clinician to stop), then cleaning will not be done at that particular time and an attempt will be made to incorporate cleaning into the next scheduled.

Maintenance of Foot Baths, Foot Brushes and Disinfectant Spray Bottles

- Once a week the **foot brushes** located at the end of the drain hallways are cleaned of organic debris by spraying forcefully with the hose, and then sanitized by inverting in a 10% bleach solution and allowing brushes to soak for 30 minutes. While this is being done, a "fresh" previously sanitized foot brush is rotated in for use.
- The accelerated peroxide spray bottles (or 10% Clorox solution, discouraged due to extensive corrosion) in both the **spray bottles** located at the end of the drain hallways and the **foot bath** outside the cart room are changed once a day, usually the last thing in the afternoon.

Traffic Control

- Doors leading to the stall corridors from the dirty hallway, and from the clean main hallway to the drain hallways should be kept closed to discourage passage between dirty and clean areas.
- Access from the large animal parking lot or the loading dock into the back hallway or the last stall corridor hallway should be restricted to authorized personnel only. Facilities personnel, students, or housekeeping should NOT be using these doors to gain access into the clinic area.
- Only LARAC personnel involved in maintaining the cleanliness of the equine clinic should be in the back “dirty” hallway, and they should be familiar with and follow all sanitary measures. The **FOOT BATHS** should be used **every time** an individual has to exit the dirty hallway.
- The centrally located double door in the back hallway should NOT be used for access by facilities personnel from outside to inside into the back hallway. It is to be kept locked by a barrel bolt that is released easily on the inside to allow use as an emergency exit in the case of a fire.

Daily LARAC Record Keeping

To be performed by a member of the LARAC staff assigned to and completing the routine daily tasks in the equine clinic.

- Once daily the temperature and humidity must be read and recorded on the observation sheet in the middle hallway. Make sure to reset the thermometer once the high and low has been recorded.
- At the end of a work period the daily task list should be filled out and initialed to ensure completion of all tasks and recording of any problems encountered. This daily task list is located in a binder kept in the LARAC team leader’s office.
• Record the census, including the admissions and discharges and not just the balance remaining.
• At the end of the month observation sheets should be filed in the filing cabinet in the team leader’s office area, and the census sheets turned in to the LARAC manager.

RODAC Plates and Cultures
- Swabs for RODAC plates are taken of random stalls, including stall door, floors, walls, drain walkway floors, and drain grates on a routine basis (4 times a year) in an effort to monitor infection control.
- After reading the growth on the RODAC plates, if the colony count is over 31 colonies, then cultures are obtained and submitted to identify organisms involved.
- Any stall that housed an animal with diarrhea or was under enteric precautions is cultured after the animal leaves and following cleaning and sanitization.
- Once a “contaminated” stall is vacated, cleaned, sanitized, and cultured, it should not be used again until the results from the cultures have been returned and evaluated. The equine service chief will be given a copy of the culture results.

Food Animal

General guidelines applicable to all cases
- Coveralls are mandatory when contacting patients. Students should start the day in clean coveralls and have a second set available in the event the first becomes dirty. Contingent on the situation, faculty may direct students to change coveralls at any time, and students are expected to comply. Coveralls are expected to be worn in the animal clinical areas and may be worn to pharmacy. Students should not be seen in coveralls in other public areas beyond the operator’s desk (e.g., dining room, classrooms, library).
- Footwear that can be cleaned and disinfected must be worn in animal areas. Rubber boots are mandatory when working with patients.
- Hand washing is required after patient contact. Students should wear gloves when appropriate.
- Instruments, blood tubes, syringes, needles, needle caps, and any other instrument or device should NEVER be placed in one’s mouth.
- Disinfection of stethoscopes, thermometers, and other personal equipment is required after use. Disposable wipes, Lysol®, or Ruhof Biocide® disinfecting spray should be used before use on another patient.
- Before entering public areas, footwear should be cleaned and walk-through mats/footbaths are required to be used to disinfect boot soles when leaving/entering the barn and between entering and leaving patient stalls. Rubber boots are to be removed in the food animal anteway, and are not to be worn in the student room. Foot mats/foot baths will be charged (with 1 Stroke (1 ounce/gallon of water) for foot baths and Virkon S® for foot mats) and will be cleaned and recharged daily by the senior technician.
- Personnel (excluding LARAC when stripping/cleaning stalls) shall enter and leave stalls from a designated gate in each stall except when moving animals. Footbaths are to be placed at each stall.
- Clean stalls should not be walked through to access other areas of the barn.
• Pre-weaned calves will have a nipple bottle assigned. After use, they must be cleaned in water and disinfected with 1% bleach. If required, an esophageal feeder will be assigned to the calf and sent home or discarded following discharge.
• Hospitalized animals will be assigned a rope halter. Following discharge, halters are cleaned and disinfected in a 10% bleach solution, allowed to dry, and restocked for future use.
• Reusable equipment used in patient treatment should be cleaned and disinfected using 1% (or greater) bleach solution or Ruhof Biocide® disinfecting spray.
• Transporters and tables are cleaned between animals of different owners, and if a significant infectious disease is suspected, items are disinfected using 1% bleach.
• Healthy animals and neonates are to have exams/treatments done before illness or isolation/enteric/special precaution cases.
• Containers containing 4x4 gauze soaked in chlorhexadine or alcohol will be emptied, cleaned, and autoclaved once weekly to decrease contamination and resistant organism growth. All gauze sponges in each container will be used before refilling/restocking. Alternatively, containers may hold dry gauze, which can be moistened with irrigation or disinfectant after removal from the container.
• Consumption of food and drink is limited to the student room, as described in the syllabus. This policy is in effect at all times, including weekends and holidays.
• Traffic pattern through the Food Animal section – Doors leading to the main corridor are to remain closed to discourage unregulated, non-participant foot traffic through the section.
• Owner traffic and visitation. Case doctors often prefer owners or farm personnel to be at hand during examination of an animal, and this is permissible. However, to facilitate hospital operations, owners are not to be present in the surgical or obstetrical theater unless required specifically by case doctors.
• Owners may request to visit hospitalized animals. They may do so on a scheduled basis, and must be accompanied by a case doctor or student. Owners must comply with all biosafety procedures employed in the food animal section (outerwear, footwear, etc.). During the time of the visit, hospital operations must be suspended. Therefore, in effort to accommodate visitations and ongoing hospital activities, visitation is limited to once per day for a maximum of 30 minutes time. Owners are not to enter isolation stalls or the calf/small ruminant isolation facility.
• Cell phones and electronic image capture. Student cell phone use is forbidden while in the food animal clinic. Photos for educational purposes are permitted with case doctor permission, but may not be distributed outside the MSU CVM by any means.
• In the event that an owner refuses to pay for isolation or special precautions hospitalization, the animal will be discharged to the client.

Milking Cows

• Milking personnel must wear gloves.
• Lactating cows are examined once daily with the California Mastitis Test and recorded in medical record unless directed otherwise by the case veterinarian.
• In the event that more than one lactating cow is hospitalized, milking should occur first in normal cow(s) and proceed to cows with mastitis of increasing severity. The milking machine will be disinfected between each case.
• Udders are prepared for milking using a dry wipe, predipping full length with 0.5% iodine, allowing 30 seconds or more contact time, followed by thorough cleaning of teats using disposable paper towels (one towel per teat). The milking unit is then applied.
• Immediately following milking, teats are dipped full length in 0.5% iodine post dip.
• The milking claw and milk lines are rinsed by drawing 2 gallons of warm water (as used to wash hands), then disinfected by drawing 2 gallons of hot water containing 200 PPM hypochlorite (add 1 ounce (30 ml) of bleach to 2 gallons water). Rinsing with 2 gallons of hot water to remove bleach residue follows the disinfection step.

Barn Surveillance Protocol
• Routine barn surveillance for Salmonella sp. shall be conducted not less than four times yearly.
• Designated areas of the barn shall be swabbed with sterile 4x4 gauze moistened with sterile saline irrigation or sterile water. The gauze will then be placed in sterile specimen cups and submitted for routine Salmonella sp. screen. Designated swab areas are to include the floor of the chute area, student rounds room floor, technician office/food animal pharmacy floor, small ruminant/calf exam room, two stalls, the anteroom where rubber boots are changed, and any other suspicious areas.
• No more than two samples shall be pooled for culture.
• In the case of a positive sample, individual samples will be cultured to determine the area of concern.

When an area is deemed to be contaminated, the area will be re-cleaned and disinfected following the LARAC stall disinfection procedures, then the area re-swabbed for surveillance cultures. Following the discharge of enteric/suspect cases, LARAC will be responsible for cleaning and disinfecting stalls. Stall swabs for Salmonella surveillance will be obtained following cleaning, and stalls not used until negative culture results have been returned.

Biosecurity Procedures in the Field Services Ambulatory Vehicles
• All material taken onto farms by Field Services is to be removed from the premises when leaving.
• All boots are to be disinfected before leaving the premises. Coveralls that are heavily contaminated with fecal and bloody material should be removed and placed in garbage bags before one enters vehicles.
• All discarded materials are disposed of properly on return to CVM – sharps in sharps containers, excess vaccine and vaccine bottles to biohazard bags, used blood tubes in biohazard bags, etc.
• All floor mats are removed and washed on return to CVM.
• The outer surfaces of the trucks, including wheels, are scrubbed with detergent and rinsed. Seat surfaces inside the truck are cleaned, as necessary. The veterinary technicians will demonstrate proper cleaning techniques.

Enforcement of policy
CVM expects that all faculty, staff, and students comply with these policies. If students have questions they should feel free to ask faculty for guidance.

Students should expect that the Chair of the Pathobiology & Preventive Medicine Department will enforce these policies. If a student is observed violating one of these policies one time, the course grade will be adjusted down 10%. For example, if a student had a 92% course grade at rotation end, it will become 82% with a single violation. Multiple violations are possible, and will result in a 10% course grade decrease for each incident.
The theriogenology caseload is composed of horses presented for reproductive assessment/treatment. Generally the following is applicable.

- Animals seen are healthy and current on pertinent vaccination. Vaccination history data are contained within the records.
- The open air stalls and availability of paddocks for housing generally limits direct contact and risk of aerosol exposure.
- Because students feed and water their individual patient animals, spread by caretaker is less likely.
- However, incoming horse(s) could be at an inapparent stage (incubation/recovery) of an infectious disease, specifically strangles, *Rhodococcus* infection, or salmonellosis. Thus measures that limit exposure to other patients are employed.

Specific control measures

Prevention- general

- History taken will confirm vaccine and EIA status of in-patient animals.
- History taken will confirm no on-going significant infectious disease problems exist on home farm.
- Immune status of foals born at facility or accompanying dam is ascertained (IgG measured).
- Stalls are cleaned and disinfected completely between horses (new admission), and water/feed buckets are cleaned daily (disinfected after animal is discharged). Exam/treatment area, stocks, etc., are cleaned between exam periods (i.e., 3-4x daily)
- Students wash (clean hands/arms) between exams.
- Students observe animals for nasal discharges, changes in demeanor, breathing, coughing, and temperament several times daily. At least once daily, observations are recorded.
- Pre-existing protocols cover use of nondisposable instruments and equipment in breeding management (AVs, phantom, etc.), as well as breeding management protocols (minimum contamination breeding).

Prevention-specific

- Sick/special needs foals- attendants wear gloves/disposable gowns/boot covers & change with each treatment.
- Adult horses identified as ill are transferred to the Equine Medicine Service and transported/moved to that facility.
- Horses coming from the AHC equine Hospital. Sometimes extended care patients from the Equine Medicine & Surgery Service are moved to the Scales facility. Only horses admitted with a non-infectious illness are eligible for Scales housing and these horses are placed typically into a stall next to empty stalls (no direct contact). Caretakers follow hygienic protocols established by the equine section.
8. Infection Control in the Diagnostic Laboratory Services

Introduction
Infection control for the Diagnostic Laboratory Services area is based on the principles of biosafety, biosecurity, and biocontainment. These principles are derived from the National Institute of Health (NIH), Center for Disease Control and Prevention (CDC), and National Science Foundation (NSF) recommendations in contemporary publications referenced below. The Diagnostic Laboratory Services area contains both research and clinical laboratories. The Office of Regulatory Compliance (ORC) divisions of Institutional Biosafety Committee (IBC) and the Institutional Animal Care and Use Committee (IACUC) regulate the research laboratories. The Institutional Biosafety Officer (Dr. Pat Cox) inspects each research laboratory annually and reviews, in company with the IBC, all research activities involving all microorganisms to ensure strict compliance with NIH and CDC guidelines. Drs. Austin and Wills direct the research laboratories in this area. Therefore, this document addresses the clinical diagnostic and teaching laboratories not covered by the ORC. These laboratories and divisions of Diagnostic Laboratory Services include receiving, microbiology, histopathology, clinical pathology and the student teaching laboratory. It is important to note that Diagnostic Laboratory Services division of the Department of Pathobiology and Population Medicine is an AAVLD accredited laboratory that follows the administrative policies, work practices, procedures, and guidelines, and has facility design and safety equipment to prevent or reduce accidental exposure and infection. The professional staff of Diagnostic Laboratory Services is staffed by ASCP0-certified Medical Technologists with extensive training and continuing annual education addressing infection control, biosafety, and biosecurity.

Operational definitions

Biosafety
Development and implementation of administrative policies, work practices, facility design, and safety equipment to prevent transmission of biologic agents to workers, other persons and animals, and the environment.

Biosecurity
Protection of high-consequence microbial agents and toxins, or critical relevant information, against theft or diversion by those who intend to pursue intentional misuse.

Containment
This term is used in describing safe methods for managing infectious materials in the laboratory environment where they are being handled or maintained. The purpose of containment is to reduce or eliminate exposure of laboratory workers, other persons and animals, and the outside environment to potentially hazardous agents.
Primary containment
The protection of personnel and the immediate laboratory environment from exposure to infectious agents is provided by both good microbiological technique and the use of appropriate safety equipment. The use of vaccines may provide an increased level of personal and animal protection when deemed necessary by the laboratory administration.

Secondary containment
The protection of the environment external to the laboratory from exposure to infectious materials is provided by a combination of facility design and operational practices. Therefore, the three elements of containment include laboratory practice and technique, safety equipment, and facility design. The risk assessment of the work to be done with a specific agent determines the appropriate combination of these elements.

The most important element of containment is strict adherence to standard microbiological practices and techniques. Persons working with infectious agents or potentially infected materials must be aware of potential hazards and must be trained and proficient in the practices and techniques required to handle such material safely. The director or person in charge of the laboratory is responsible for providing or arranging appropriate training of personnel. Diagnostic and teaching laboratories are manned by highly trained and certified medical technologists and governed by faculty members trained in specific areas. Each laboratory has developed or adopted a biosafety or operations manual that identifies the hazards that will or may be encountered and that specifies practices and procedures designed to minimize or eliminate exposures to these hazards. Laboratories handling infectious organisms and materials have adopted the fifth edition of the BMBL, referenced below, as their biosafety manual. Personnel are advised of special hazards and are required to read and follow the required practices and procedures unique for each special activity. CVM scientists are trained and knowledgeable in appropriate laboratory techniques, safety procedures, and hazards associated with handling infectious agents and are responsible for the conduct of work with infectious agents or material. These individuals are advised to consult with biosafety or other health and safety professionals with regard to risk assessment.

Clinical laboratories, especially those in health care facilities, receive clinical specimens with requests for a variety of diagnostic and clinical support services. Typically, the infectious nature of clinical material is unknown, and specimens are often submitted with a broad request for microbiological examination for multiple agents (e.g., specimens submitted for "routine," acid-fast, and fungal cultures). It is the responsibility of each laboratory director to establish standard procedures in the laboratory that address realistically the issue of the infective hazard of clinical specimens.

Except in extraordinary circumstances (e.g., suspected hemorrhagic fever, select agents, and certain foreign animal diseases), the initial processing of clinical specimens and serological identification of isolates is done safely at Biosafety Level
2, the recommended level for work with blood borne pathogens such as hepatitis B virus and HIV. The containment elements described in Biosafety Level 2 are consistent with the OSHA standard "Occupational Exposure to Blood borne Pathogens" (3, 4) from the Occupational Safety and Health Administration. This requires the use of specific precautions with all clinical specimens of blood or other potentially infectious material (Universal or Standard Precautions, 5). Additionally, other recommendations specific for clinical laboratories may be obtained from the National Committee for Clinical Laboratory Standards (6).

Biosafety Level 2 recommendations and OSHA requirements focus on the prevention of percutaneous and mucous membrane exposures to clinical material. Primary barriers such as biological safety cabinets (Class I or II) are used when performing procedures that might cause splashing, spraying, or splattering of droplets. Biological safety cabinets are used also for the initial processing of clinical specimens when the nature of the test requested or other information suggests the likely presence of an agent readily transmissible by infectious aerosols, or when the use of a biological safety cabinet (Class II) is indicated to protect the integrity of the specimen.

The segregation of clinical laboratory functions and limited or restricted access to such areas is the responsibility of each laboratory director. It is also the director’s responsibility to establish standard, written procedures that address the potential hazards and the required precautions to be implemented.

Personal Hygiene, Disinfection and Biosecurity for Faculty, Staff, Students and the Public

- At the beginning of each clinical rotation, and/or division within each rotation, faculty and appropriate staff will reinforce the principles of hygiene and cleanliness through explanation of issues and situations particular to the specific area. This includes hand washing, personal hygiene and disinfection of tabletops and work areas.
 - Routine hand washing and/or hand sanitizer use between each specimen and before leaving specimen areas for other parts of the hospital, College, or campus. Individuals are referred to the CDC publication in Clinical Microbiology Reviews, by Günter Kampf and Axel Kramer, referenced below, for current information on the use of hand sanitizers.
 - Routine change of coveralls, scrubs or other outerwear whenever there is visible soiling or potential contamination.
 - Containment of potentially infectious material by requiring students, faculty, and staff to remove protective clothing (boots, white coats, scrubs and coveralls) and change shoes before leaving the hospital to visit other areas of the College or University campus. Persons in ambulatory or preventive medicine field rotations, where coveralls and boots are generally required, should be mindful of the potential to carry pathogens into sensitive areas such as restaurants and other places of business and change into their “street clothes” and wash their hands and arms before entering. Students should be discouraged from wearing coveralls or scrubs from home to clinical rotations and back home again to avoid
taking pathogens home to their families. Lab coats, coveralls, and soiled clothing and shoes should never be worn in the cafeteria area or break room areas or when leaving the building to eat or socialize.

- Routine tabletop and workstation disinfection is completed following each major task or activity. Because the best disinfectant to be used is highly dependent on the individual agent and the local environmental parameters, each laboratory and individual is advised to consult the American Society for Microbiology definitive publication by Gerald McDonnell and A. Denver Russell, referenced below, for choosing and using disinfectants.

- Faculty and staff should inquire about possible immunocompromised situations, pregnancy, treatments, or other therapy resulting in reduced immunity in students and public, when appropriate, that could increase an individual’s susceptibility to infectious agents. Provisions will be made with administration to accommodate these individuals in course and laboratory requirements.

- Food and drink should not be consumed in animal holding areas or laboratory areas of the hospital. This includes access areas and hallways immediate to the aforementioned locations. Also included is the application of contact lenses and make-up. All laboratories housing infectious materials will have proper signage stating clearly rules and dangers. However, if food or drinks are to be consumed or served, separate areas such as the break rooms should be used to avoid possible contamination.

- For purposes of biosecurity, the diagnostic microbiology laboratories will not release isolates to unauthorized individuals or unaccredited institutions, laboratories, or industry without proper and required certification. Proper and required certification for individual use must include an Institutional Biosafety Committee research number, evidence of BSL-2 or greater laboratory certification, both obtained from the Office of Regulatory Compliance, and a MOA outlining intent of use. Faculty may request additional send out tests at other accredited or governmental (USDA, NVSL, ARS, CDC, ECT…) laboratories through our diagnostic laboratories.

Biosafety surveillance

- LARAC and various clinical divisions can submit environmental swabs and specimens for culture and analysis of contamination and disinfection to the diagnostic microbiology laboratory.

- The diagnostic microbiology laboratory monitors and cases for the occurrence of MRSA, VRE, and other potentially epidemic and nosocomial organisms in the various clinical divisions of the CVM. Oral and written reports are supplied to the clinical divisions of the hospital regarding occurrence of important pathogens.

- The clinical divisions of the CVM may request review of diagnostic records in anticipation of problems or the identification of new and ongoing problems they recognize. Recommend designating a specific person or position with this responsibility.
Recommendations

• All specimens to be submitted to the Diagnostic Laboratory Services division of the Department of Pathobiology and Population Medicine should be routed through the Receiving Window. Students or staff may not deliver the specimens to individual laboratories. Traffic to working laboratories should be minimized to prevent and reduce spread of contamination and transmission of infectious organisms.

• Specimens delivered to the individual diagnostic laboratories should be transported in a clean, spill proof container, such as a sealed Tupperware container, by a single “clean” individual from Diagnostic Receiving who has not been in contaminated clinical or other service areas. (Note: This is already being done from the necropsy areas to the various laboratory service divisions.)

• Faculty, staff, and students not assigned to DPPM should not visit physically or enter the diagnostic microbiology or other service laboratories to receive results, check on preliminary findings, deliver specimens, or other such activities. For the purposes of biosecurity and biocontainment, the diagnostic microbiology and other service laboratories will be operated as limited access areas. This will include the entire second floor of DPPM.

• Failure to adhere to biosafety, biosecurity, and biocontainment recommendations will result in a report to MVRDL system/DPPM administration for corrective action as deemed necessary.

References

Informational Resources

Resources for information, consultation, and advice on biohazard control, decontamination procedures, and other aspects of laboratory safety management include:

Centers for Disease Control and Prevention
Attention: External Activities Program
Atlanta, Georgia 30333
Telephone: (404) 639-7233

National Institutes of Health
Attention: Division of Safety
Bethesda, Maryland 20205
Telephone: (301) 496-1357

National Animal Disease Center
U.S. Department of Agriculture
Ames, Iowa 50010
Telephone: (515) 862-8258

United States Department of Labor, Occupational Safety and Health Administration

- Centers for Disease Control and Prevention
 o Tuberculosis:
 ▪ 1994: www.cdc.gov and search for TB
 ▪ 1997 (labs): www.cdc.gov for TB lab
 o Immunization for Health Care Workers: www.cdc.gov/mmwr search for immunization for health care workers
• HIV Prophylaxis: www.cdc.gov/mmwr and search HIV prophylaxis

- National Institutes of Health:
 • NIH Guidelines for Recombinant DNA Molecules:
 http://www4.od.nih.gov/oba/rac/guidelines_02/NIH_Guidelines_Apr_02.htm
 • NIH Office of Recombinant DNA Activities: www.NIH.gov/ and search for recombinant DNA

- Biosafety in Microbiological and Biomedical Laboratories (BMBL) 5th Edition

- American Biological Safety Association: http://www.absa.org/

- Mississippi State University Biosafety:
 http://www.msstate.edu/dept/compliance/biosafety/biosafety.htm

- Mississippi State Dept. of Health: "ADOPTED STANDARDS FOR THE REGULATION OF MEDICAL WASTE IN HEALTH CARE FACILITIES LICENSED BY THE MISSISSIPPI STATE DEPARTMENT OF HEALTH
 http://www.msdh.state.ms.us/msdhsite/index.cfm/30,116,83,pdf/licensureinferencecreg%2Epdf

- HHS & USDA Select Agents and Toxins:
 http://www.cdc.gov/od/sap/docs/salist.pdf

Recommendations for Control of Infectious Disease in Diagnostic Laboratory Services Necropsy

Necropsy room entrance
• Visitors should enter the necropsy area only through the front double door entrance with the footbath.
• Visitors should enter necropsy only after putting on disposable boots or necropsy boots and lab coat found in the necropsy locker room.

Necropsy Room Policies
• All persons entering the necropsy floor for transient observation should put on removable or washable boots and lab coat, as stated above. Any more
involved participation necessitates changing into necropsy coveralls and necropsy boots.

- All boots, aprons, and reusable gloves should be washed with detergent in the necropsy room at the end of necropsy activity. Boots should be disinfected in the footbath and left in the locker room.
- Persons performing necropsies on animals suspected to have zoonotic disease or at the pathologist's discretion should wear goggles when performing a necropsy.
- All areas of exposed skin (hands, arms) should be washed with soap and water when leaving the necropsy room.
- Students, staff, and faculty experiencing significant exposure (through mucous membranes or cut skin) of material from cases with suspected zoonotic disease should consult with appropriate health service personnel.
- No necropsy coveralls should ever be worn in the AHC. Students/staff/faculty involved with such cases should change clothing before entering the AHC.
- Students performing necropsies on any species suspected of having salmonellosis or parvovirus in dog or cat should not return to the clinic following necropsy.
- All specimens held for necropsy “show and tell” should be held in plastic bags in buckets filled with Klotz fixative.
- Necropsy instruments and tools after use are to be cleaned with detergent.
- Necropsy room tables are to be cleaned with detergent after use and disinfected subsequently after cleaning with Nolvasan scrub or dilute bleach solution.
- The necropsy room floor is to be cleaned after use with detergent and then disinfected daily with Nolvasan Scrub or dilute bleach solution. Use of hot water pressure washing should be done at least every other day to prevent organic buildup on the floor.
- Post-mortem room cooler floors are to be pressure washed with detergent and then disinfected with Nolvasan scrub daily.
- Post-mortem room disposal buckets and barrels, cooler shelves, and drains should be pressure washed with detergent weekly following disposal pickup.
- Cleaned and disinfected barrels for wastes should be held on the concrete pad between the necropsy building and the cooler.
- All specimens for diagnostic testing taken from the necropsy room should be in clean whirl pack bags and carried in the closed plastic boxes provided to the respective laboratories. Transported specimens will be accompanied by a signed sample-tracking sheet designating the receiving laboratory, specimen type, and test(s) requested.

Communicating rabies test result

- Names and phone numbers of students performing post mortem on cases to be tested for rabies should be kept on file until the tests for rabies has been completed.
• Negative and positive results of rabies testing will be reported to pathologists as soon as such results are received.
• It is the obligation of faculty to contact students on necropsy exposed to confirmed rabies suspects and inform them of the need to report to the Student Health Service.
• It is the responsibility of the pathologist and clinician (if the case originated in the teaching hospital) to contact others exposed to a rabies suspect or case and inform them of the rabies test results.

MVRDL/PRDL: The same biosafety and biosecurity principles described above for CVM Diagnostic Laboratory Services apply to the MVRDL/PRDL 2 day rotation. In addition, the following instructions should be followed during the 2-day MVRDL/PRDL rotation.

LABORATORY and FIELD EXPERIENCE

During the two-week rotation at the Animal Emergency & Referral Center in Flowood, you will spend one day at the diagnostic lab and one day on a poultry field trip. You are encouraged to approach the endeavor with an open mind and an attitude to learn. You may participate in necropsy on either day, so bring boots and scrubs or coveralls.

Purpose of the laboratory day
Gain an understanding of:

• regulatory testing (ex: EIA and AI)
• proper packaging and shipping of samples
• importance of complete and accurate submission forms
• various testing methodologies used in each of the lab sections

Purpose of the poultry field trip day
In addition to helping the student gain a better understanding of the structure and operation of the poultry industry, these field trips to Mississippi's largest agricultural industry emphasize:

• bio-security
• food safety
• zoonotic disease prevention, monitoring and detection

It is important for the student to understand the application of these three topics in animal production systems.

In preparation for the poultry field trip

• If you have had contact with birds of any kind, be sure you have showered and changed into freshly laundered clothes and clean footwear before leaving on the field trip.
• You may visit a hatchery, farms, and/or a processing plant. These environments can be damp or wet. Appropriate dress includes, but is not limited to, scrubs and boots.
• In general, no picture or video taking is permitted during the field trip.
• Most field trips provide an opportunity for participating in a necropsy. We encourage you to take advantage of this learning opportunity.
• Please be prepared to buy your own lunch. If lunch is provided by your host(s), please thank them for their hospitality and generosity.
• We understand that the vast majority of veterinary students are not familiar with the poultry industry. However, the student is encouraged to recognize that many of the production practices observed during the poultry field trip can be applied to other animal production systems.
• Remember that you are a representative of CVM while on the field trip, so act professionally, show interest, and leave a good impression!
9. Shelter Medicine Program Infection Control and Biosecurity

Shelter Medicine Program Guidelines for Students Traveling to Area Shelters
Because animals at animal shelters are at a higher risk of contracting and subsequently shedding contagious diseases, care should be taken to prevent the spread of disease while at the shelter and prevent the spread of disease to the Animal Health Center at the College of Veterinary Medicine.

Biosecurity on the Mobile Unit and Shelter Trips
• Students will depart the school in professional attire and change to scrubs upon arrival at the shelter. Students should wear only closed toe shoes while on the mobile unit or at the shelter.
• Students will change back into their professional clothes at the end of the day for the return ride to school. Worn scrubs should be placed into plastic bags and handled as potentially biohazardous. Immediately upon your return scrubs should be laundered.
• Students will not re-enter any areas in the building in which animals are present or may be present and will have no contact with client owned or research animals after spending time at an animal shelter or humane organization.
• Animal bites will be reported to the hospital administration, and an accident report will be submitted. If needed, students will be dismissed from the remainder of the day for necessary follow up with a physician.
• Contact between animals should be minimized as much as possible. Cages should be cleaned with an appropriate disinfectant between each animal visit.
• The mobile unit will be cleaned each night between shelter visits.
• Food and drink are not permitted on the mobile unit. Food consumption should occur in designated break/lunch areas within the shelter.
• Students and personnel should wash their hands after handling animals. Gloves should be worn when handling animals with suspected diseases.
• Immunocompromised students are responsible for making that health information known to veterinarians and technicians on the mobile unit and in the shelter program.

Homeward Bound Animals
Homeward Bound Animals are dogs and puppies from area shelters that are transported to adoption guarantee shelters in the northeastern United States. These animals are removed from the shelters and placed in to foster homes for no less than 2 weeks before transport and range greatly in health status, immune status, and length of time out of the shelter environment. During their time in foster homes, veterinary care and health maintenance of these animals may be provided through the shelter medicine program. As often as is possible, health maintenance procedures will be handled on the mobile unit. If additional care is needed, animals
may be treated in the Animal Health Center small animal clinic and should be handled as client owned animals. On transport days, all animals are contained in the large animal corridor. At this point the animals should be fully vaccinated and should have been in foster care for a minimum of 2 weeks. Additionally, foster volunteers and shelter employees are advised not to bring animals with obvious signs of illness.
10. Multidisciplinary Laboratory Biosecurity/Veterinary Medical Teaching Program

General cleanliness and hygiene

- Maintaining cleanliness and appropriate personal hygiene are responsibilities of ALL personnel working or studying in the Multidisciplinary Laboratories.
- Clean exam gloves should be worn when handling high-risk patients (i.e. infectious disease suspects, or highly susceptible patients such as those on antibiotics, colic cases, or neonatal foals) or when working with anatomical specimens.
- Surfaces or equipment contaminated by feces, secretions, or blood must be cleaned and disinfected immediately by students participating in a laboratory activity and/or in charge of a patient.
- Hand washing is required after removing protective gloves, after returning to the AHC or laboratory from rest rooms, after handling animals, or returning from other outside areas. Disposable cleansing tissues (Kleenex®) rather than handkerchiefs must be used when necessary for personal purposes.
- Personal items, such as coats, hats, umbrellas, and purses, must be stored in lockers outside the AHC or lab or at some designated location near the vicinity of the personal workspace. These items should not be carried through animal holding or treatment areas or a laboratory.
- Good housekeeping, i.e., cleanliness, is important for reducing laboratory risks and hazards. Desktops and laboratory benches must be free of unnecessary paper, chemicals, and equipment.
- Cabinet and lab bench tops are to be cleaned with Amphyl® or alcohol as directed by faculty members in charge of the laboratory. This solution can be found in the center of MDL 1 or in the student diagnostic lab on the third floor.
- Laboratory and AHC visitors are restricted. If persons are allowed in the laboratory or AHC, they must be accompanied by a class member or a member of the staff and provided with appropriate protection.
- The MDL is not currently an approved location for conducting regulated, IACUC approved, live animal procedures. No live animal handling should be performed in this area.

Disinfection of equipment

- All instruments, equipment, or other objects such as mouth speculums, endoscopes, grooming tools, clipper blades, etc., must be sterilized or disinfected between uses on different patients.
- Reusable dose syringes and funnels need to be disassembled, cleaned with a detergent of all organic debris, and then soaked in dilute bleach 250 – 500 PPM solution for 10 minutes.
- Stethoscopes owned by personnel may be used in the teaching laboratories, but they should be wiped always between patients with alcohol.
• Digital thermometers should be cleaned thoroughly between patients to remove debris and wiped with alcohol.
• Any other instruments carried routinely by personnel, such as bandage scissors, must be cleaned and wiped with alcohol between patients.

Food/Beverages

• Cosmetics, food, candy, and beverages must be kept outside laboratory areas, animal holding areas, and animal treatment areas. They should be consumed in designated areas, such as cafeteria and break rooms. Contiguous spaces, for example hallways, are not designated spaces for consumption of food, candy, and beverages.
• Tobacco products (including smokeless) are not to be used in the building.

Attire

• The MSU-CVM promotes the use of hospital-dedicated attire in order to decrease the risk of carrying infectious agents home where people or animals may be exposed.
• All personnel are required to wear clean, professional attire, clean protective outer garments, and clean, appropriate footwear at all times when working with patients or in laboratory activities.
• This attire should be appropriate to the job at hand (e.g., lab coat over classroom attire or surgical scrubs for small animal exposure whereas coveralls with heavy boots or shoes are appropriate footwear with protective outer garments when working with large animal patients. There is a high risk of contamination with infectious materials while performing animal related tasks).
• Footwear: It is recommended that all personnel wear sturdy boots or shoes at all times while working with large animals. Such footwear is easier to clean and disinfect compared with footwear constructed of porous materials (e.g. running shoes), and helps protect against injury when working around large animal patients.
• Personnel must be willing to disinfect footwear while working
• Laboratory attire appropriate to the specific learning activity should be worn at all times. No sandals, open toed shoes, or high-heeled shoes are to be worn during laboratory activities. Long hair is to be tied back during laboratories.
• Effective protective apparel must be accessible. Protective safety glasses or face shields are required to be worn when potential spill, splatter, exposure to contaminated biological aerosols, or impact conditions occur.
• Laboratory coats, surgical scrubs, gloves, masks, booties and other protective apparel must **not** be worn outside laboratory spaces or CVM.

Guidelines for dogs/cats arriving from area animal shelters

Because dogs and cats from animal shelters are more likely to have contracted contagious disease, it is important to be vigilant for nosocomial transmission of upper respiratory and enteric diseases. It is extremely important to segregate these
animals from the general hospital population and take biosecurity precautions whenever these animals are present at MSU-CVM.

- Shelter animals are housed in the MDL housing unit (L3525 and L3527). No shelter animal is to enter the AHC without specific orders from the course leader.
- All shelter animals enter and leave the building through the MDL loading door (L2601).
- Shelter animals are walked in the field northeast of the CVM building. Fecal waste matter deposited on the lawn must be picked up immediately and deposited into the waste dumping station.
- Personal protective attire is to be worn when working in the animal housing area: lab coat and gloves
- Lab coats worn in the animal housing area are not to be worn into the classrooms, common areas, AHC, or out of the CVM building.
- Care should be taken to prevent contact between dogs.
- Patients with clinical signs of disease, such as respiratory, GI, or fever of unknown origin, should be handled as high-risk patients. Additional consideration and precautions should be followed with suspect dermatological conditions. Determination should be made as to the cause of clinical signs as specific diseases of concern and that are seen commonly, include ringworm (dermatophytes) and ectoparasites (fleas, ticks, mites, etc.) Faculty assigned to the course should be notified immediately for instructions for appropriate biosecurity.

- Personal hygiene with hands washed should be observed at all times between animals and before leaving the area.
- A clean leash is provided for each shelter patient. These leases should not be used for any other animal or leave the MDL area.
- Stethoscopes used on shelter animals must be cleaned with alcohol or chlorhexidine after each use.
- Thermometers must be cleaned after each use with alcohol or chlorhexidine.
- Animal housing rooms are depopulated, scrubbed and sanitized weekly by LARAC staff.

Guidelines for receiving other patients

Cage Assignments

- Cage assignments are made by LARAC or MDL staff.
- CVM owned leashes and muzzles are used while the animal is hospitalized. All leashes and muzzles should be disinfected between patients by soaking them in chlorhexidine solution for leashes or dilute bleach for muzzles.

Patient Records and Medications

- Students assigned to the patient maintain patient records.
- Records are to be kept in the rack outside the student surgery lab (L3120) at all times.
- Patient medications are kept in the student diagnostic lab (L3130)
Feed and Water
• Students care for humane society animals and CVM animals assigned to student groups. Students are responsible for the food and water for their patients.

LARAC MDL cleaning and culturing protocol

LARAC Infectious Disease Control

An animal hospital is inherently confronted with dealing with and caring for animals with infectious diseases. Trying to prevent the spread of such infectious organisms to other animals and humans must be paramount in our husbandry management. To be successful in this endeavor all persons involved in the care of the animals and their environment must be aware of and follow all infectious disease containment procedures. There must be free and open communication between MDL and instructional staff, LARAC personnel and facilities personnel so that all are made aware of a suspicious or real contagious disease. Such communication allows appropriate infectious disease containment practices to be initiated and followed in a prompt and thorough manner. Presented below is a written program for the initiation of an infectious disease control (IDC) program and the steps required to carry out such a program.

Determination of suspicious or confirmed infectious disease

If conditions present that indicate an infectious process (i.e. soft stool, anorexia, fever, leucopenia, purulent nasal discharge, sub-mandibular swelling) the clinician in charge decides if it is appropriate to continue treating the animal in the MDL housing with the initiation of certain precautionary measures and further diagnostic tests. Once it has been determined that the change in the animal’s condition warrants the initiation of any precautionary measures, LARAC needs to be notified promptly.

Responsibilities of communicating need for IDC measures
• MDL staff is to
 - Communicate to the LARAC staff via written communication the presence of an infectious or potentially infectious case in MDL. Pertinent information that must be shared includes; the animal, the housing room number, and the clinical problem that is causing the initiation of protective measures.
 - If during normal working hours, in addition to written notification, also verbally communicate the initiation of IDC measures directly to a team leader and/or the LARAC individual working in MDL that day. This will help insure prompt initiation of all necessary protective measures.
 - Initiate, communicate and maintain the infectious disease control measures established by the MDL and instructional staff that are
to be followed by the vet students, the technical support staff and the clinical staff in the daily care of the animal.

- LARAC staff is to
 - Once LARAC has received notification of initiation of IDC measures, these steps should be followed
 - Verify written information obtained from MDL staff.
 - Assure that the LARAC worker assigned to MDL is aware of the initiation of IDC measures and familiar with all that entails.
 - Notify the LARAC animal health technician of the presence of any cases requiring IDC measures so that appropriate measures may be taken.
 - Follow all established precautionary measures until the dog/cat has been discharged, the cage cleaned, sanitized and cultures obtained.
Infectious Disease Control (IDC) Measures

Classification of infectious disease

<table>
<thead>
<tr>
<th>High Risk</th>
<th>Moderate Risk</th>
<th>Zoonotic Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canine Parvovirus</td>
<td>Infectious Canine Hepatitis (CAV-1)</td>
<td>Rabies*</td>
</tr>
<tr>
<td>Canine Distemper</td>
<td>Leptospirosis</td>
<td></td>
</tr>
<tr>
<td>Canine Infectious Tracheobronchitis</td>
<td>Feline Infectious Peritonitis</td>
<td></td>
</tr>
<tr>
<td>Feline Calicivirus</td>
<td>Salmonellosis</td>
<td></td>
</tr>
<tr>
<td>Feline Rhinotracheitis</td>
<td>Campylobacteriosis</td>
<td></td>
</tr>
<tr>
<td>Feline Panleukopenia</td>
<td>Hospital Diarrhea</td>
<td></td>
</tr>
<tr>
<td>Chlamydirosis</td>
<td>Cheyletiella Mange</td>
<td></td>
</tr>
<tr>
<td>Q-Fever</td>
<td>Sarcoptic Mange</td>
<td></td>
</tr>
<tr>
<td>Exotic Newcastle Disease (Plague)*</td>
<td>Giardiasis</td>
<td></td>
</tr>
<tr>
<td>Canine Brucellosis</td>
<td>Chlamydirosis</td>
<td></td>
</tr>
<tr>
<td>Avian Influenza*</td>
<td>Tularemia</td>
<td>Q-Fever</td>
</tr>
<tr>
<td></td>
<td>Cryptosporidiosis</td>
<td>Tularemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plague</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cat Scratch Disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Bartonella)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cheyletiella Mange</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarcoptic Mange</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toxoplasmosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryptococcosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryptosporidios</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monkey Pox*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tuberculosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mycobacterium bovis*</td>
</tr>
</tbody>
</table>

* denotes a reportable disease

Classification of Disease
- Suspicion of High Risk Infectious Disease Not Identified prior to arriving at MSU-CVM
 - If the patient has entered the MDL area, before the potential for a high-risk infectious disease has been identified, every effort must be made to identify possible areas of contamination. All areas where potential contamination with infectious material may have occurred must be cleansed thoroughly with an effective
disinfectant solution All students and clinicians handling the patient must wear gloves, gowns and protective boots as soon as the potential for high-risk infectious disease has been identified. All other students with patients in the housing area whose patients may have been exposed to the infectious disease should be informed of the risk and the symptoms of the disease in question. Vaccination status should be determined and updated vaccination recommended for diseases to which the animal has been exposed and for which there is a vaccine available (especially for parvovirus, canine distemper, panleukopenia, infectious tracheobronchitis). The shelters are responsible for keeping their animal’s vaccination status up to date.

• Contamination of Persons in Contact with Patient Suspected of High Risk Infectious Disease
 o Any person (student, clinician, technician, staff member) who has unprotected contact with a patient suspected of high risk infectious disease must immediately be provided with a clean uncontaminated set of surgical scrubs or change into other clean uncontaminated clothing. The contaminated clothing should be placed in a plastic bag and transported for laundering. After placement of the clothing in the bag, the person must thoroughly wash his/her hands prior to any further contact with other patients or clients. In addition, any person who experiences contamination of their personal clothing during protected contact with a patient suspected of high risk infectious disease must immediately change clothing as outlined above.

• Contamination of Persons in contact with patient suspected of moderate infectious disease
 o MDL personnel and/or students, who are required to have contact with a patient suspected of a moderate risk infectious disease, must wear a protective gown and gloves. A special trash receptacle labeled as BIOHAZARDOUS MATERIAL-POTENTIALLY INFECTIOUS must be located nearby and all gowns, gloves, and soiled cage materials must be placed in this receptacle. This trash will be disposed of as indicated above. ALL PERSONNEL WHO HAVE CONTACT WITH THE PATIENT MUST IMMEDIATELY AND THOROUGHLY WASH THEIR HANDS AFTER REMOVING THEIR GOWNS AND GLOVES, AND PRIOR TO ANY OTHER PATIENT CONTACT. If any article of personal clothing becomes soiled with infective material or comes into close contact with the patient, procedures as described above must be followed. If the patient must leave the critical care unit for diagnostic testing, relevant procedures should be followed as delineated above. Any equipment, which has become soiled by infective material, should be immediately and thoroughly cleansed with an effective
disinfectant solution (1:10 dilution bleach) prior to being utilized for any other patient.

• Admission of Patients Suspected of ZOONOTIC POTENTIAL Infectious Disease

o All patients entering the MDL surgical area from area shelters are screened for signs of infectious disease. These animals may show signs of zoonotic infectious disease after arriving at CVM.

o Students and personnel, who are required to have contact with a patient suspected of having a zoonotic infectious disease, must wear a protective gown and gloves. A special trash receptacle labeled as BIOHAZARDOUS MATERIAL-POTENTIALLY INFECTIOUS, must be located nearby and all gowns, gloves, and soiled cage materials must be placed in this receptacle. The LARAC staff will dispose of this trash. ALL PERSONNEL WHO HAVE CONTACT WITH THE PATIENT MUST IMMEDIATELY AND THOROUGHLY WASH THEIR HANDS AFTER REMOVING THEIR GOWNS AND GLOVES, AND PRIOR TO ANY OTHER PATIENT CONTACT. If any article of personal clothing becomes soiled with infective material or comes into close contact with the patient, procedures in 2(c) above must be followed. If the patient must leave the critical care unit for diagnostic testing, relevant procedures in 2(b) above should be followed. Any equipment that has become soiled by infective material should be immediately and thoroughly cleansed with an effective disinfectant solution (1:10 dilution bleach) prior to being utilized for any other patient.

o Students and personnel, who have had contact with a patient suspected of having a zoonotic infectious disease known to be transmitted by fomites must not enter into areas of food preparation or distribution designed for human consumption wearing the same clothing and shoes as during the potential exposure. The use of disposable barrier clothing is required. Clothing and shoes must be changed before leaving the building in these circumstances. Clothing should be bagged and laundered, and shoe bottoms and sides disinfected.

o Shelters should be informed of the zoonotic potential of their animal’s disease as soon as a reasonable suspicion or confirmation of a zoonotic disease is established. The client should be encouraged to contact their local physician for further advice following exposure to a zoonotic disease. See Table above.

o Immunocompromised people (clients, students, staff, faculty, technicians) may be exposed to zoonotic diseases in our hospital or from animals at home. Special precautions to lower the risk for acquisition of an infectious agent from animals may be appropriate in these circumstances. It is important that confidentiality be maintained if that is the wish of the individual. Recommend that the College should develop a protocol to allow
immunocompromised persons to self-identify to a designated Biosecurity Officer, section head, or AHC director. Immunocompromised individuals may not be otherwise identifiable. Resources for more information on these issues are: Healthy Pets, Healthy People at www.cdc.gov and PAWS (Pets Are Wonderful Support) [Pets and the Immunocompromised Patient] at www.pawssf.org/library_immunocompromised.htm. These sources provide helpful material for attending veterinarians and the immunocompromised community.

Daily LARAC Record Keeping
To be performed by a member of the LARAC staff assigned to and completing the routine daily tasks in the equine clinic.

- Once daily the temperature and humidity must be read and recorded on the observation sheet in the middle hallway. Make sure to reset the thermometer once the high and low has been recorded.
- At the end of a work period the daily task list should be filled out and initialed to ensure completion of all tasks and recording of any problems encountered. This daily task list is located in a binder in the LARAC team leader’s office.
- Record the census, including the ins and outs, not just the balance.
- At the end of the month the observation sheets should be filed in the filing cabinet in the team leader’s office area, and the census sheets should be turned in to the LARAC manager.
11. Clinical Outreach Services

Animal Emergency and Referral Center – Flowood, MS
Current safety precautions observed at the Animal Emergency and Referral Center in Flowood, MS include

- Distemper, Parvo and Feline respiratory cases are hospitalized in viral isolation. We limit access to viral isolation to one technician each day. That technician wears a disposable gown, gloves and booties and utilizes a footbath to enter and exit. The assigned technician does not work on immunologically naïve patients during the day (i.e., puppies if they have a Parvo case.) All equipment used in viral isolation remains in viral isolation. Nothing is moved back and forth. Garbage is carried directly to the dumpster.
- Any patients with suspected contagious bacterial cases (those with high fever and high white counts, or Lepto suspects) are kept in our bacterial isolation ward. Similar precautions are taken as with viral cases, however, we don’t require booties or a footbath. We try to limit access to the doctor, technician and student on the case. Those patients are treated last.
- Isolation procedures are posted on the window of each ward. They were modified from those that we obtained from College of Veterinary Medicine.
- Suspected viral (e.g., Parvo) cases are kept outside of the facility in the owner’s car until a confirmatory test (e.g., Parvo snap test) is performed. Patients that test positive are brought into the hospital through the rear entrance and carried into the viral isolation ward. They are not allowed to walk on our premises. We do not use students in viral isolation.
- All diarrhea/vomiting cases are seen in Exam Room 3. The room is disinfected completely from the top to bottom if, for example, a Parvo case slips through. Further, it is mopped and wiped down after any gastrointestinal case is seen. Disinfectants used are bleach or Parvosol.
- Team members wear gloves any time they see a patient contaminated with blood or other body fluids. Gloves are worn when cleaning cages and running diagnostic laboratory equipment (i.e. handling bodily fluids).
- Urinary catheterization is performed using sterile gloves for passing the catheter, and barrier gloves for restraining and positioning.
- Lead aprons and thyroid shields are worn during radiology. X-ray monitoring badges are worn. We have eliminated the problem of people being exposed in the direct beam. We close the door most of the time while radiographs are being taken. We try to minimize the number of people involved to radiograph a patient.
- Standard OR procedures are followed as outlined in our handbook (i.e., clean scrubs, booties, cap, gown and mask).

Veterinary Specialty Center – Starkville, MS
Special considerations for the Veterinary Specialty Services on Stark Road in Starkville, MS include
Safety Regulations – Zoonotic Disease

- It is the responsibility of all personnel to determine the vaccination status for rabies in all animals before any examination begins. Students should NOT assume someone else has made this inquiry and make certain this information is obtained before handling any animal at Veterinary Specialty Center. This vaccination status must be documented by official records obtained from the referring veterinarian and should not be based solely on the client’s recollection that the vaccines are “current.” Any patient admitted without a current status of their rabies vaccination will be treated as a rabies suspect until proven otherwise. Safety precautions include minimal handling and wearing of protective gloves at all times when working with these animals or any bodily fluids from said animal (urine, blood, saliva).